I will start with an example. Consider a symmetry breaking pattern like $SU(4)\rightarrow Sp(4)$. We know that in $SU(4)$ there is the Standard Model (SM) symmetry $SU(2)_L\times U(1)_Y$ but depending on which vacuum we use to break this symmetry, in a case you can totally break the SM symmetry, with the vacuum : $$\Sigma_1 = \begin{pmatrix} 0& I_2 \\ -I_2 & 0 \end{pmatrix}$$ and in another case, these symmetry is preserved, with the vacuum $$\Sigma_2 = \begin{pmatrix} i\sigma_2& 0 \\ 0 & i\sigma_2 \end{pmatrix}$$ In the first case (with $\Sigma_1$), the generators corresponding to the SM symmetry are part of the broken generators so the SM symmetry is totally broken. In the second case ($\Sigma_2$), the SM generators are part of the unbroken generators then the SM symmetry is preserved. As you can read, I know the answers but not how to find them !
So, my questions are :
How is it possible in general (not only for the $SU(4)\rightarrow Sp(4)$ breaking pattern) to construct the vacuum that breaks the symmetry ?
Is it possible, when constructing the vacuum, to ensure that the vacuum will (or not) break a sub-symmetry like the SM symmetry in the previous example ?