I'm wondering about how to show that $A_a\rightarrow A_a+\alpha\partial_0A_a$, with $\alpha$ infinitesimal, is an infinitesimal symmetry of $\mathcal L=-\frac14F_{ab}F^{ab}$.
\begin{equation} F_{ab}\rightarrow F_{ab}+\partial_a(\alpha\partial_0A_b)-\partial_b(\alpha\partial_0A_a)=F_{ab}+\partial_0(\alpha F_{ab}). \end{equation}
\begin{equation} \Rightarrow \mathcal L\rightarrow\mathcal L-\frac12F_{ab}\partial_0(\alpha F^{ab})=\mathcal L-\frac14\partial_0(\alpha F_{ab}F^{ab}). \end{equation}
We require $\delta\mathcal L=0$ for it to be called "a symmetry of $\mathcal L$", right? Or do we only require $\delta\mathcal L=$ a total derivative? Either way, I don't seem to get what we want.