Prove that $tr\left(\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\right)=0$ when the spacetime dimension is not 4.
What I have tried:
We know that $\gamma_\alpha\gamma^\alpha=d\mathbb{1}$, so we can write:
$tr\left(\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\right)=\frac{1}{d}tr\left(\gamma_\alpha\gamma^\alpha\gamma_\mu\gamma_\nu\gamma_\rho\gamma_\sigma\gamma_5\right)$
Then I thought I could commute $\gamma^\alpha$ past two gammas because if $\alpha\notin\left\{\mu,\,\nu,\,\rho,\,\sigma\right\}$, then $\left\{\gamma_\alpha,\,\gamma_\mu\right\}=0$ and somehow show that I get minus of what I started with, using the cyclicality of the trace and that $\left\{\gamma_5,\,\gamma_\mu\right\}=0$.
However, what I am not sure about is why can we always find such $\alpha$ so that $\alpha\notin\left\{\mu,\,\nu,\,\rho,\,\sigma\right\}$. I understand this is generally possible when $d\in\mathbb{R}\wedge d>4$, however, when $d\in\mathbb{C}$, this claim doesn't make any sense for me.
Can anyone provide a rigorous proof of this claim which avoids the hurdle I mentioned above?