Well, notice that the amplitude of the voltage across the capacitor is given by:
\begin{equation}
\begin{split}
\hat{\text{V}}_\text{C}&=\left|\underline{\text{V}}_{\space\text{C}}\right|\\
\\
&=\left|\underline{\text{Z}}_{\space\text{C}}\cdot\underline{\text{I}}_{\space\text{C}}\right|\\
\\
&=\left|\underline{\text{Z}}_{\space\text{C}}\right|\cdot\left|\underline{\text{I}}_{\space\text{C}}\right|\\
\\
&=\left|\frac{1}{\text{j}\omega\text{C}}\right|\cdot\left|\underline{\text{I}}_{\space\text{source}}\right|\\
\\
&=\left|\frac{1}{\text{j}\omega\text{C}}\right|\cdot\left|\frac{\underline{\text{V}}_{\space\text{source}}}{\underline{\text{Z}}_{\space\text{i}}}\right|\\
\\
&=\frac{\left|1\right|}{\left|\text{j}\omega\text{C}\right|}\cdot\frac{\left|\underline{\text{V}}_{\space\text{source}}\right|}{\left|\underline{\text{Z}}_{\space\text{i}}\right|}\\
\\
&=\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle\hat{\text{V}}_{\space\text{source}}}{\displaystyle\left|\text{R}+\text{j}\omega\text{L}+\frac{1}{\text{j}\omega\text{C}}\right|}\\
\\
&=\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle\hat{\text{V}}_{\space\text{source}}}{\displaystyle\left|\text{R}+\text{j}\omega\text{L}-\frac{\text{j}}{\omega\text{C}}\right|}\\
\\
&=\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle\hat{\text{V}}_{\space\text{source}}}{\displaystyle\left|\text{R}+\left(\omega\text{L}-\frac{1}{\omega\text{C}}\right)\text{j}\right|}\\
\\
&=\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle\hat{\text{V}}_{\space\text{source}}}{\displaystyle\sqrt{\text{R}^2+\left(\omega\text{L}-\frac{1}{\omega\text{C}}\right)^2}}
\end{split}\tag1
\end{equation}
So, the voltage across the source and capacitor is given by:
\begin{equation}
\begin{split}
\hat{\text{V}}_{\space\text{source + capacitor}}&=\hat{\text{V}}_{\space\text{source}}+\hat{\text{V}}_\text{C}\\
\\
&=\hat{\text{V}}_{\space\text{source}}+\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle\hat{\text{V}}_{\space\text{source}}}{\displaystyle\sqrt{\text{R}^2+\left(\omega\text{L}-\frac{1}{\omega\text{C}}\right)^2}}\\
\\
&=\hat{\text{V}}_{\space\text{source}}\left(1+\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle1}{\displaystyle\sqrt{\text{R}^2+\left(\omega\text{L}-\frac{1}{\omega\text{C}}\right)^2}}\right)
\end{split}\tag2
\end{equation}
EDIT:
Now, we can solve for the maximum:
$$\frac{\displaystyle\partial}{\displaystyle\partial\omega}\left(\hat{\text{V}}_{\space\text{source}}\left(1+\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle1}{\displaystyle\sqrt{\text{R}^2+\left(\omega\text{L}-\frac{1}{\omega\text{C}}\right)^2}}\right)\right)=0\tag3$$
Solving for \$\omega\$, gives:
$$\hat{\omega}=\frac{\displaystyle1}{\displaystyle\text{L}}\cdot\sqrt{\frac{\displaystyle\text{L}}{\displaystyle\text{C}}-\frac{\displaystyle\text{R}^2}{2}}\space,\space\text{CR}^2<2\text{L}\tag4$$
So, for the maximum we get:
\begin{equation}
\begin{split}
\max\hat{\text{V}}_{\space\text{source + capacitor}}&=\lim_{\omega\space\to\space\hat{\omega}}\hat{\text{V}}_{\space\text{source}}\left(1+\frac{1}{\omega\text{C}}\cdot\frac{\displaystyle1}{\displaystyle\sqrt{\text{R}^2+\left(\omega\text{L}-\frac{1}{\omega\text{C}}\right)^2}}\right)\\
\\
&=\hat{\text{V}}_{\space\text{source}}\left(1+\frac{\displaystyle2\text{L}}{\displaystyle\text{R}\sqrt{\text{C}\left(4\text{L}-\text{CR}^2\right)}}\right)
\end{split}\tag5
\end{equation}