University of Florida/Egm6341/s11.team1.Gong/Mtg38
<
University of Florida
<
Egm6341
< s11.team1.Gong
Mtg 38: Wed, 30 Mar 11
page38-1
(
1
)
p
.37
−
3
Z
′
=
h
z
∙
(
1
)
{\displaystyle {\color {red}(1)}{\color {blue}p.37-3}\ Z^{\color {red}'}=h{\overset {\color {red}\bullet }{z}}\ {\color {red}(1)}}
z
(
s
)
=
∑
i
=
1
4
N
i
¯
(
s
)
d
i
¯
(
2
)
{\displaystyle z(s)=\sum _{i=1}^{4}{\color {red}{\overline {\color {black}N_{i}}}}(s){\color {red}{\overline {\color {black}d_{i}}}}\ {\color {red}(2)}}
z
(
t
)
=
∑
i
=
1
4
N
i
(
t
)
d
i
(
3
)
{\displaystyle z(t)=\sum _{i=1}^{4}N_{i}(t)d_{i}\ {\color {red}(3)}}
Recall:
C
o
l
l
o
c
a
t
i
o
n
a
t
t
i
→
(
5
)
p
.36
−
4
{\displaystyle Collocation\ at\ t_{i}\ \rightarrow \ {\color {red}(5)}{\color {blue}p.36-4}}
C
o
l
l
o
c
a
t
i
o
n
a
t
t
i
+
1
→
(
6
)
p
.36
−
4
{\displaystyle Collocation\ at\ t_{i+1}\ \rightarrow \ {\color {red}(6)}{\color {blue}p.36-4}}
Now:
C
o
l
l
o
c
a
t
i
o
n
a
t
t
i
+
1
2
⇒
{\displaystyle Collocation\ at\ t_{i+{\color {red}{\frac {1}{2}}}}\Rightarrow }
z
∙
i
+
1
2
=
f
i
+
1
2
=
f
(
z
i
+
1
2
,
t
i
+
1
2
)
(
4
)
{\displaystyle {\overset {\color {red}\bullet }{z}}_{i+{\color {red}{\frac {1}{2}}}}=f_{i+{\color {red}{\frac {1}{2}}}}=f(z_{i+{\color {red}{\frac {1}{2}}}},\ t_{i+{\color {red}{\frac {1}{2}}}})\ {\color {red}(4)}}
z
i
+
1
2
=
z
(
s
=
1
2
)
{\displaystyle z_{i+{\color {red}{\frac {1}{2}}}}=z(s={\color {red}{\frac {1}{2}}})}
=
H
W
∗
6.6
1
2
(
z
i
+
z
i
+
1
)
+
h
8
(
f
i
−
f
i
+
1
)
(
5
)
{\displaystyle {\overset {\color {blue}HW^{*}6.6}{=}}{\frac {1}{2}}(z_{i}+z_{i+1})+{\frac {h}{8}}(f_{i}-f_{i+1})\ {\color {red}(5)}}
page38-2
(
1
)
p
.38
−
3
z
∙
i
+
1
2
=
z
i
+
1
2
′
1
h
(
1
)
{\displaystyle {{\color {red}(1)}{\color {blue}p.38-3}\ {\overset {\color {red}\bullet }{z}}}_{i+{\color {red}{\frac {1}{2}}}}={z}_{i+{\color {red}{\frac {1}{2}}}}^{\color {red}'}{\color {blue}{\frac {1}{h}}}\ {\color {red}(1)}}
z
∙
i
+
1
2
=
z
′
(
s
=
1
2
)
=
H
W
∗
6.6
{
(
1
)
p
.37
−
2
(
1
)
p
.37
−
3
−
3
2
(
z
i
−
z
i
+
1
)
−
1
4
(
z
i
′
+
z
i
+
1
′
)
(
2
)
{\displaystyle {\overset {\color {red}\bullet }{z}}_{i+{\color {red}{\frac {1}{2}}}}=z^{\color {red}'}(s={\color {red}{\frac {1}{2}}}){\color {blue}{\overset {HW^{*}6.6{\begin{cases}&{\color {red}(1)}{\color {blue}p.37-2}\\&{\color {red}(1)}{\color {blue}p.37-3}\end{cases}}}{\color {black}=}}}-{\frac {3}{2}}(z_{i}-z_{i+1})-{\frac {1}{4}}({z}_{i}^{\color {red}'}+{z}_{i+1}^{\color {red}'})\ {\color {red}(2)}}
(
1
)
(
2
)
:
{\displaystyle {\color {red}(1)\ _{\ }(2):}}
z
∙
i
+
1
2
=
−
3
2
h
(
z
i
−
z
i
+
1
)
−
1
4
(
f
i
+
f
i
+
1
)
(
3
)
{\displaystyle {\overset {\color {red}\bullet }{z}}_{i+{\color {red}{\frac {1}{2}}}}={\frac {-3}{2{\color {blue}h}}}(z_{i}-z_{i+1})-{\frac {1}{4}}(f_{i}+f_{i+1})\ {\color {red}(3)}}
z
∙
i
+
1
2
≠
f
i
+
1
2
i
n
g
e
n
e
r
a
l
{\displaystyle {\overset {\color {red}\bullet }{z}}_{i+{\color {red}{\frac {1}{2}}}}{\color {red}\neq f_{i+{\frac {1}{2}}}}\ in\ general}
G
a
p
=
Δ
z
∙
i
+
1
2
−
f
i
+
1
2
(
4
)
{\displaystyle Gap\ =\ \Delta \ {\overset {\color {red}\bullet }{z}}_{i+{\color {red}{\frac {1}{2}}}}-f_{i+{\color {red}{\frac {1}{2}}}}\ {\color {red}(4)}}
C
o
l
l
o
c
a
t
i
o
n
a
t
t
i
+
1
2
⇒
Δ
=
0
(
5
)
{\displaystyle Collocation\ at\ t_{i+{\color {red}{\frac {1}{2}}}}\ \Rightarrow \ \Delta \ =\ 0\ {\color {red}(5)}}
G
o
a
l
:
_
F
i
n
d
(
z
i
,
z
i
+
1
)
s
t
Δ
=
0
(
6
)
{\displaystyle {\color {blue}{\underline {Goal:}}}\ Find\ (z_{i},z_{i+1})\ st\ \Delta \ =\ 0\ {\color {red}(6)}}
page38-3
Δ
=
0
⇒
z
i
+
1
=
(
1
)
z
i
+
h
/
2
3
[
f
i
+
4
f
i
+
1
2
+
f
i
+
1
]
⏟
S
i
m
p
s
o
n
′
s
r
u
l
e
!
(
2
)
p
.7
−
4
{\displaystyle \Delta =0\Rightarrow \ z_{i+1}{\overset {\color {red}(1)}{=}}{\color {blue}{\underset {Simpson's\ rule\ {\color {red}!\ (2)}\ p.7-4}{\underbrace {\color {black}z_{i}+{\frac {h/2}{3}}[f_{i}+4f_{i+{\frac {1}{2}}}+f_{i+1}]} }}}}
z
∙
=
f
(
z
,
t
)
(
2
)
{\displaystyle {\overset {\color {red}\bullet }{z}}=f(z,t)\ {\color {red}(2)}}
∫
t
i
t
i
+
1
z
∙
d
t
⏟
z
i
+
1
−
z
i
=
∫
t
i
t
i
+
1
d
t
⏟
a
p
p
l
y
s
i
m
p
s
o
n
′
s
r
u
l
e
⇒
(
1
)
(
3
)
{\displaystyle {\color {blue}{\underset {\color {black}z_{i+1}-z_{i}}{\underbrace {\color {black}\int _{t_{i}}^{t_{i+1}}{\overset {\color {red}\bullet }{z}}dt} }}}={\color {blue}{\underset {apply\ simpson's\ rule\ \Rightarrow \ {\color {red}(1)}}{\underbrace {\color {black}\int _{t_{i}}^{t_{i+1}}dt} }}}\ {\color {red}(3)}}
Opt. control pb.
:
{z
i
, i=1,2,...,n}
unknown
solved by NLP
(nonlin. progr)
I
V
P
(
I
n
i
t
i
a
l
V
a
l
u
e
⏟
(
4
)
z
(
t
o
)
=
z
0
p
b
)
:
I
n
t
.
n
o
n
l
i
n
e
a
r
O
D
E
s
⏟
(
2
)
{\displaystyle {\color {blue}IVP\ ({\underset {{\color {red}(4)}{\color {black}z(t_{o})=z_{0}}}{\underbrace {\color {blue}Initial\ Value} }}pb)}:\ Int.\ {\color {blue}{\underset {\color {blue}(2)}{\underbrace {\color {black}nonlinear\ ODEs} }}}}
page38-4
Hermite-Simpson time-stepping algo
Assume
z
i
known
, find z
i+1
using
(1)
p.38-3
Need:
1
)
f
i
=
f
(
z
i
,
t
i
)
c
a
n
c
o
m
p
.
{\displaystyle {\color {blue}1)}\ f_{i}=f(z_{i},t_{i})\ {\color {red}can\ comp.}}
2
)
f
i
+
1
=
f
(
z
i
+
1
⏟
u
n
k
n
o
w
n
,
t
i
+
1
⏟
k
n
o
w
n
)
u
n
k
n
o
w
n
{\displaystyle {\color {blue}2)}\ f_{i+1}=f({\color {red}{\underset {unknown}{\underbrace {\color {black}z_{i+1}} }}},{\color {red}{\underset {known}{\underbrace {\color {black}t_{i+1}} }}})\ {\color {red}unknown}}
3
)
f
i
+
1
2
=
f
(
z
i
+
1
2
⏟
u
n
k
n
o
w
n
,
t
i
+
1
2
⏟
k
n
o
w
n
)
u
n
k
n
o
w
n
{\displaystyle {\color {blue}3)}\ f_{i+{\color {red}{\frac {1}{2}}}}=f({\color {red}{\underset {unknown}{\underbrace {\color {black}z_{i+{\color {red}{\frac {1}{2}}}}} }}},{\color {red}{\underset {known}{\underbrace {\color {black}t_{i+{\color {red}{\frac {1}{2}}}}} }}})\ {\color {red}unknown}}
t
i
+
1
2
=
t
i
+
h
2
{\displaystyle t_{i+{\color {red}{\frac {1}{2}}}}=t_{i}+{\frac {h}{2}}}
(5)
p.38-1:
z
i
+
1
2
=
g
(
z
i
,
z
i
+
1
)
(
1
)
{\displaystyle z_{i+{\color {red}{\frac {1}{2}}}}=g(z_{i},z_{i+1})\ {\color {red}(1)}}
(1)
p.38-1:
z
i
+
1
=
z
i
+
h
/
2
3
[
f
i
+
4
f
(
g
(
z
i
,
z
i
+
1
)
,
t
i
+
1
2
)
+
f
i
+
1
]
(
2
)
{\displaystyle z_{i+1}=z_{i}+{\frac {h/2}{3}}[f_{i}+4f(g(z_{i},z_{i+1}),t_{i+{\color {red}{\frac {1}{2}}}})+f_{i+1}]\ {\color {red}(2)}}
⇔
F
(
z
i
+
1
)
=
(
3
)
0
⏟
n
o
n
l
i
n
e
a
r
a
l
g
.
e
q
.
{\displaystyle \Leftrightarrow \ F(z_{i+1}){\overset {\color {red}(3)}{=}}{\underset {\color {blue}nonlinear\ alg.\ eq.}{\underbrace {0} }}}
⇒
N
e
w
t
o
n
−
R
a
p
h
s
o
n
−
S
i
m
p
s
o
n
{\displaystyle {\color {blue}\Rightarrow \ Newton-Raphson-Simpson}}