Solution

Taylor Series


with
and 

![{\displaystyle E_{n}=I-I_{n}=\int _{0}^{1}\left[f(x)-f_{n}(x)\right]dx=\int _{0}^{1}\underbrace {\frac {x^{n}}{(n+1)!}} _{w(x)}\underbrace {f^{(n+1)}\left(\xi (x)\right)} _{g(x)}dx}](../../../2859777faca43e27a6683904deab21eaf49d4b78.svg)
for ![{\displaystyle \alpha \in [0,1]}](../../../daf3c62599ea71319c85f715c9e590d2bab2d036.svg)

, 
, 




Below are the values from Numerical Analysis of Taylor series from HW_1




We are getting same values from both analysis for Taylor series
Trapazoidal Rule
Error for Composite Trapazoidal rule is given by

where
for ![{\displaystyle \zeta \varepsilon [a,b]}](../../../92ebe4f71d2d299091e4c41fff1b7ac95aa98373.svg)
For the given function
, we have
![{\displaystyle \displaystyle f^{(2)}(x)={\frac {e^{x}[x^{2}-2x+2]-2}{x^{3}}}}](../../../b83c5d6cf9990bca525031b05ce21643f814d584.svg)
For the given interval [0,1] the maximum value of function
is achieved at 
![{\displaystyle \displaystyle M_{2}=f^{(2)}(x=1)={\frac {e[1+2-2]-2}{1}}=0.71828182}](../../../58683d7b0e8225f7818c3095d4dea43728c3a6cb.svg)










Below are the results from Numerical analysis from HW 1








We can see that we are getting order
at n=128 from both the analysis.
Composite Simpsons Rule
The error estimate of the Composite Simpson's rule is given as

where
for ![{\displaystyle \zeta \varepsilon [a,b]}](../../../92ebe4f71d2d299091e4c41fff1b7ac95aa98373.svg)
For the given function
, we have
![{\displaystyle \displaystyle f^{(4)}(x)={\frac {e^{x}[x^{4}-4x^{3}+12x^{2}-24x]-24}{x^{5}}}}](../../../fc6d886a0976d5d66b2053dd43fac41100edddbf.svg)
The function
has maximum value at 
![{\displaystyle \displaystyle M_{4}={\frac {e[1-4+12-24+24]-24}{1}}=0.46453645}](../../../01e2db2eec981bd55123be1297fd3af1805365ea.svg)



Below are the results from Numerical analysis from HW 1


We can see that we are getting order
at n=4 from both the analysis.