Solution
Composite Trapezoidal rule
From Simple trapezoidal rule we have ,
![{\displaystyle I_{1}={\frac {h}{2}}[f_{\text{o}}+f_{1}]}](../../../eb57678700de1c99a0ea3cb31ce27da18f35a59d.svg)
![{\displaystyle =h[{\frac {1}{2}}f_{\text{o}}+{\frac {1}{2}}f_{1}]}](../../../c0a71f2640e66a8e946bbb61fddf77ccce672fef.svg)
similarly we have
![{\displaystyle I_{2}=h[{\frac {1}{2}}f_{1}+{\frac {1}{2}}f_{2}]}](../../../da6c17d10c6b7a6056a3c2135f71addb0cc1ce2a.svg)
.
.
.
.
![{\displaystyle I_{\text{n-1}}=h[{\frac {1}{2}}f_{\text{n-2}}+{\frac {1}{2}}f_{\text{n-1}}]}](../../../af64845ea9e84c502433d45a75ecbcf1c2c56a8a.svg)
![{\displaystyle I_{\text{n}}=h[{\frac {1}{2}}f_{\text{n-1}}+{\frac {1}{2}}f_{\text{n}}]}](../../../e0524cede45d21d11d77b34548bb85a283a55ba1.svg)
Summation of all of above expression gives
![{\displaystyle I_{\text{n}}=h[{\frac {1}{2}}f_{\text{o}}+({\frac {1}{2}}f_{1}+{\frac {1}{2}}f_{1})+({\frac {1}{2}}f_{2}+{\frac {1}{2}}f_{2})+.....+({\frac {1}{2}}f_{\text{n-1}}+{\frac {1}{2}}f_{\text{n-1}})+{\frac {1}{2}}f_{\text{n}}]}](../../../13e0713acca77d4a362720cab9e806d6d513130d.svg)
![{\displaystyle =h[{\frac {1}{2}}f_{\text{o}}+f_{1}+f_{2}+.......+f_{\text{n-1}}+{\frac {1}{2}}f_{\text{n}}]}](../../../46eb305af82ef60fd0e2a0151bfd218a1ce63be7.svg)
Hence Proved..
Composite Simpson's Rule
From Simple Simpson's rule we obtain ,
![{\displaystyle I_{2}={\frac {h}{3}}[f_{\text{o}}+4f_{1}+f_{2}]}](../../../82df5d70d6bcd53cba8537006c8106ee699b62bd.svg)
where 
Similarly
![{\displaystyle I_{4}={\frac {h}{3}}[f_{2}+4f_{3}+f_{4}]}](../../../1ec7a8f3fa21557a0014ec2d47beafb64b249c6e.svg)
.
.
.
.
![{\displaystyle I_{\text{n-2}}={\frac {h}{3}}[f_{\text{n-4}}+4f_{\text{n-3}}+f_{\text{n-2}}]}](../../../e8092374d3d6febff8db3e556257277fdefdcca5.svg)
![{\displaystyle I_{\text{n}}={\frac {h}{3}}[f_{\text{n-2}}+4f_{\text{n-1}}+f_{\text{n}}]}](../../../2bfa9d54764d1575b96837a3ed792a89b7f041de.svg)
After Summation of above terms we obtain
![{\displaystyle I_{\text{n}}={\frac {h}{3}}[f_{\text{o}}+4f_{1}+(f_{2}+f_{2})+4f_{\text{3}}+(f_{4}+f_{4})+4f_{5}+f_{6}.......+(f_{\text{n-2}}+f_{\text{n-2}})+4f_{\text{n-1}}+f_{\text{n}}]}](../../../e218952cba35591e72a0bafb61cdc708dbaa5a99.svg)
![{\displaystyle I_{\text{n}}={\frac {h}{3}}[f_{\text{o}}+4f_{1}+2f_{2}+4f_{\text{3}}+2f_{4}+4f_{5}+f_{6}.......+2f_{\text{n-2}}+4f_{\text{n-1}}+f_{\text{n}}]}](../../../f34abb20caca0a45d0ab6f38ed17287445d45ed9.svg)
where n = 2k and k = 1,2,3,4.....
Hence Proved