Step2a
Integrating the term withing the square brackets by "Integration by parts" Prob 7 HW4 we can rewrite (1) as follows
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}[[P_{2}(t)g^{(1)}(t)]_{-1}^{+1}-\int _{-1}^{+1}P_{2}(t)g^{(2)}(t)dt]}](../../../71743df11bc628a2c222acf156b3be5c29407da9.svg) |
(2) |
In order to eliminate terms with even powers of
we need to remove terms with odd derivatives of
.Therefore, the boundary term in eqn (2) above must be set to zero by selection of
.
We have
from eqns (1 and 2)P. 21-3
 |
(1)p21-3 |
 |
(2)p21-3 |
Setting
gives
and hence we get
 |
(3) |
So following this method, the next term to be eliminated will have P4(t)
 |
(4) |
Setting
and solving we get
.Continuing on these lines to we get the eqn (2) in the form
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}{[P_{2}g^{(1)}]_{-1}^{+1}-[P_{3}g^{(2)}]_{-1}^{+1}}+[P_{4}g^{(3)}]_{-1}^{+1}-[P_{5}g^{(4)}]_{-1}^{+1}+[P_{6}g^{(5)}]_{-1}^{+1}-[P_{7}g^{(6)}]_{-1}^{+1}-\int _{-1}^{+1}P_{7}g^{(7)}dt}](../../../3968df3b7795984f9a47cafd402118ef6bc0463d.svg) |
(5) |
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}{-[P_{3}g^{(2)}]_{-1}^{+1}}+-[P_{5}g^{(4)}]_{-1}^{+1}+-[P_{7}g^{(6)}]_{-1}^{+1}-\int _{-1}^{+1}P_{7}g^{(7)}dt}](../../../5f8fd6e40e5669cd2a71a7589b851751090750ac.svg) |
(6) |
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}(\sum _{i=1}^{m}-[P_{(2i+1)}g^{(2i)}]_{-1}^{+1})-\int _{-1}^{+1}P_{(2m+1)}g^{(2m+1)}dt}](../../../ce9ca8e8f3c0dce7b271ea5247ba04ad8b317546.svg) |
(7) |
manipulating the terms yields,
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}[\sum _{i=1}^{m}-[(P_{(2i+1)}(+1)g^{(2i)}(+1))-(P_{(2i+1)}(-1)g^{(2i)}(-1))]-\int _{-1}^{+1}P_{(2m+1)}g^{(2m+1)}dt}](../../../5f77cf155d7f535da2d074188d0bc69bb73430a0.svg) |
(8) |
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}[\sum _{i=1}^{m}[(P_{(2i+1)}(-1)g^{(2i)}(-1))-(P_{(2i+1)}(+1)g^{(2i)}(+1))]-\int _{-1}^{+1}P_{(2m+1)}g^{(2m+1)}dt}](../../../cb0d2006fcc402bd3a28eb7006ee2005df1835d4.svg) |
(9) |
Transforming g(t) back to f(x) we get [see [prob 6 HW4]
![{\displaystyle \displaystyle E_{n}^{1}={\frac {h}{2}}\sum _{k=0}^{n-1}[\sum _{i=1}^{m}[(P_{(2i+1)}(-1)({\frac {h^{2i}}{2}})f^{(2i)}(x_{k}))-(P_{(2i+1)}(+1)({\frac {h^{2i}}{2}})f^{(2i)}(x_{k+1}))]-\int _{x_{k}}^{x_{k+1}}P_{(2m+1)}(x)({\frac {h^{2m+1}}{2}})f^{(2m+1)}(x))dt}](../../../473c518ad274ae0164d0beb4e45994bb9f54e9f3.svg) |
(10) |
To see the difference in the two approaches we must compare the equations from the two methods. From (1) P. 27-1 we have
![{\displaystyle \displaystyle E_{n}^{1}=\sum _{r=1}^{l}h^{2r}d_{2r}[f^{(2r-1)}(b)-f^{(2r-1)}(a)]-{\frac {h^{(2l)}}{2^{(2l)}}}\sum _{k=0}^{n-1}\int _{x_{k}}^{x_{k+1}}P_{2l}(t_{k}(x))f^{(2l)}(x)dx}](../../../c4b3b0d0ff6756bfcea6898c0fc42c20bf5ecafb.svg) |
(11) |
It is seen that the first term in eqn 10 is a summation as against the term of eqn (11) which is dependent only on the end points.