Solution
We have the general formula for the Lagrange basis function
as
 |
(2 p7-3) |
for the case of Simple Simpson's Rule, n =2 i.e i=0,1,2. For the given interval ![{\displaystyle [a,b]}](../../../9c4b788fc5c637e26ee98b45f89a5c08c85f7935.svg)



Expanding equation 3 p8-3 we get:
where,
;
;

Thus we have the polynomial as

Grouping coefficients of
,
![{\displaystyle {\boldsymbol {p_{2}(x)=\left\{{\frac {f(x_{0})}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {f(x_{1})}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {f(x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})}}\right\}x^{2}-\left\{{\frac {f(x_{0})[x_{2}+x_{1}]}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {f(x_{1})[x_{2}+x_{0}]}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {f(x_{2})[x_{1}+x_{0}]}{(x_{2}-x_{0})(x_{2}-x_{1})}}\right\}x+\left\{{\frac {f(x_{0})[x_{1}x_{2}]}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {f(x_{1})[x_{0}x_{2}]}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {f(x_{2})[x_{0}x_{1}]}{(x_{2}-x_{0})(x_{2}-x_{1})}}\right\}}}}](../../../2f4be30731ac618d40f10063765b9b7873245c38.svg)
Comparing this equation with eqn 1p8-3 we see that
 |
(1) |
![{\displaystyle \displaystyle {\boldsymbol {c_{1}=-\left\{{\frac {f(x_{0})[x_{2}+x_{1}]}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {f(x_{1})[x_{2}+x_{0}]}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {f(x_{2})[x_{1}+x_{0}]}{(x_{2}-x_{0})(x_{2}-x_{1})}}\right\}}}}](../../../29d7fd9079c6d02cdae05973a5e884106a633cf1.svg) |
(2) |
![{\displaystyle \displaystyle {\boldsymbol {c_{0}=\left\{{\frac {f(x_{0})[x_{1}x_{2}]}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {f(x_{1})[x_{0}x_{2}]}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {f(x_{2})[x_{0}x_{1}]}{(x_{2}-x_{0})(x_{2}-x_{1})}}\right\}}}}](../../../186eaf8393be38ed9f2e9a0347c9457f615327da.svg) |
(3) |