Homogeneous Solution
To find the homogeneous solution,
, we must find the roots of the equation

with 


We know the homogeneous solution for the case of a double root to be
![{\displaystyle y_{h}=e^{-\alpha x}[Acos(\omega x)+Bsin(\omega x)]\!}](../../../c459547757ff9092c1f0e8534dbef8f5ce2b0bb8.svg)
![{\displaystyle y_{h}=e^{-{\frac {x}{2}}}[Acos(\pi x)+Bsin(\pi x)]\!}](../../../5f5e8dd31a33fa3927a13b4134f19ac28ecabe58.svg)
Particular Solution
We have the following excitation

From table 2.1, K 2011, pg. 82, we have
![{\displaystyle y_{p}(x)=e^{-{\frac {x}{2}}}[Kcos(\pi x)+Msin(\pi x)]\!}](../../../e5abfa767eda5faf832c68f258fa7b90642c7bbf.svg)
Since this corresponds to our homogeneous solution we must use the Modification Rule (b), K 2011, pg. 81 to solve for the particular solution
so ![{\displaystyle y_{p}(x)=xe^{-{\frac {x}{2}}}[Kcos(\pi x)+Msin(\pi x)]\!}](../../../a5deff0cc65f3ad32c2e73aee462e18d2d483581.svg)
differentiating
![{\displaystyle y_{p}'=\pi xe^{-{\frac {x}{2}}}[-Ksin(\pi x)+Mcos(\pi x)]+(e^{\frac {x}{2}}-{\frac {1}{2}}xe^{-{\frac {x}{2}}})[Kcos(\pi x)+Msin(\pi x)]\!}](../../../094c6bc1c031df22c4d57be314a372ee8f83a129.svg)
![{\displaystyle y_{p}'=e^{-{\frac {x}{2}}}(\pi x[-Ksin(\pi x)+Mcos(\pi x)]+(1-{\frac {1}{2}}x)[Kcos(\pi x)+Msin(\pi x)])\!}](../../../5dcd8d55fd5b31a1192a5656e202ec59d9c953c1.svg)
![{\displaystyle y_{p}'=e^{-{\frac {x}{2}}}[-\pi xKsin(\pi x)+\pi xMcos(\pi x)+Kcos(\pi x)+Msin(\pi x)-{\frac {1}{2}}xKcos(\pi x)-{\frac {1}{2}}xMsin(\pi x)]\!}](../../../c75485ee8adfb2f338da772a3e7ec696ed6b3978.svg)
and
![{\displaystyle y_{p}''=e^{-{\frac {x}{2}}}[-\pi ^{2}xKcos(\pi x)-\pi Ksin(\pi x)-\pi ^{2}xMsin(\pi x)+\pi Mcos(\pi x)-\pi Ksin(\pi x)+\pi Mcos(\pi x)+{\frac {1}{2}}\pi xKsin(\pi x)-{\frac {1}{2}}Kcos(\pi x)-{\frac {1}{2}}\pi xMcos(\pi x)-{\frac {1}{2}}Msin(\pi x)]-{\frac {1}{2}}e^{-{\frac {x}{2}}}[-\pi xKsin(\pi x)+\pi xMcos(\pi x)+Kcos(\pi x)+Msin(\pi x)-{\frac {1}{2}}xKcos(\pi x)-{\frac {1}{2}}xMsin(\pi x)]\!}](../../../a19cb087518b898afe5d091725d5b6de76ca0b72.svg)
![{\displaystyle y_{p}''=e^{-{\frac {x}{2}}}[-\pi ^{2}xKcos(\pi x)-\pi Ksin(\pi x)-\pi ^{2}xMsin(\pi x)+\pi Mcos(\pi x)-\pi Ksin(\pi x)+\pi Mcos(\pi x)+{\frac {1}{2}}\pi xKsin(\pi x)-{\frac {1}{2}}Kcos(\pi x)-{\frac {1}{2}}\pi xMcos(\pi x)-{\frac {1}{2}}Msin(\pi x)+{\frac {1}{2}}\pi xKsin(\pi x)-{\frac {1}{2}}\pi xMcos(\pi x)-{\frac {1}{2}}Kcos(\pi x)-{\frac {1}{2}}Msin(\pi x)+{\frac {1}{4}}xKcos(\pi x)+{\frac {1}{4}}xMsin(\pi x)]\!}](../../../09d33dd5b55d3382057c1fe2d6dc3a0e8e423c6d.svg)
grouping cosine and sine terms we get
![{\displaystyle y_{p}''=e^{-{\frac {x}{2}}}[(2\pi M-\pi xM+({\frac {1}{4}}-\pi ^{2})xK-K)cos(\pi x)+(({\frac {1}{4}}-\pi ^{2})xM-M+\pi xK-2\pi K)sin(\pi x)]\!}](../../../bea30d590cc0fdf2f67ce0486df14a333fed0277.svg)
and
![{\displaystyle y_{p}'=e^{-{\frac {x}{2}}}[(\pi xM+K-{\frac {1}{2}}xK)cos(\pi x)+(-\pi xK+M-{\frac {1}{2}}xM)sin(\pi x)]\!}](../../../5702430cac89fca3049b9bbdfd3e608bd718e655.svg)
next we substitute the above equations into the ODE

![{\displaystyle e^{-{\frac {x}{2}}}[(2\pi M-\pi xM+({\frac {1}{4}}-\pi ^{2})xK-K)cos(\pi x)+(({\frac {1}{4}}-\pi ^{2})xM-M+\pi xK-2\pi K)sin(\pi x)]+e^{-{\frac {x}{2}}}[(\pi xM+K-{\frac {1}{2}}xK)cos(\pi x)+(-\pi xK+M-{\frac {1}{2}}xM)sin(\pi x)]+(\pi ^{2}+{\frac {1}{4}})xe^{-{\frac {x}{2}}}[Kcos(\pi x)+Msin(\pi x)]=e^{-{\frac {x}{2}}}sin(\pi x)\!}](../../../b1498469fe50717c724e7af63aba569bebd84113.svg)
![{\displaystyle e^{-{\frac {x}{2}}}[(2\pi M-\pi xM+({\frac {1}{4}}-\pi ^{2})xK-K)cos(\pi x)+(({\frac {1}{4}}-\pi ^{2})xM-M+\pi xK-2\pi K)sin(\pi x)+(\pi xM+K-{\frac {1}{2}}xK)cos(\pi x)+(-\pi xK+M-{\frac {1}{2}}xM)sin(\pi x)+(\pi ^{2}+{\frac {1}{4}})x(Kcos(\pi x)+Msin(\pi x))]=e^{-{\frac {x}{2}}}sin(\pi x)\!}](../../../e4ae7d7765effd364c468dc365abd736cb301a97.svg)
![{\displaystyle e^{-{\frac {x}{2}}}[(2\pi M-\pi xM+({\frac {1}{4}}-\pi ^{2})xK-K+\pi xM+K-{\frac {1}{2}}xK+(\pi ^{2}+{\frac {1}{4}})xK)cos(\pi x)+(({\frac {1}{4}}-\pi ^{2})xM-M+\pi xK-2\pi K-\pi xK+M-{\frac {1}{2}}xM+(\pi ^{2}+{\frac {1}{4}})xM)sin(\pi x)]=e^{-{\frac {x}{2}}}sin(\pi x)\!}](../../../3de7db15a930a972135a806746012b6c67ca1fc2.svg)

after cancelling terms; we can equate cosine and sine coefficients to get two equations


so
and 
and the particular solution to the ODE is
