Report 2, Problem 9
Problem Statement
Find and plot the solution for the L2-ODE-CC corresponding to

with 
and initial conditions
, 
In another figure, superimpose 3 figs.:(a)this fig. (b) the fig. in R2.6 p.5-6, and (c) the fig. in R2.1 p.3-7
Quadratic Equation
with 


Homogeneous Solution
The solution to a L2-ODE-CC with two complex roots is given by
![{\displaystyle y(x)=e^{-{\frac {a}{2}}x}[Acos(\omega x)+Bsin(\omega x)]\!}](../../../510ae7db6943e388e2cd367f1aa44fc4f13f8348.svg)
where 
![{\displaystyle y(x)=e^{-2x}[Acos(3x)+Bsin(3x)]\!}](../../../6d7f71b17955c0f76363ac0f6b573e69e0eb226c.svg)
Solving for A and B
first initial condition 
![{\displaystyle y(x)=e^{-2x}[Acos(3x)+Bsin(3x)]\!}](../../../6d7f71b17955c0f76363ac0f6b573e69e0eb226c.svg)
![{\displaystyle y(0)=e^{-2*0}[Acos(3*0)+Bsin(3*0)]=1\!}](../../../a61630cc21c2412df2d9bfbe52a1f738cd572f1a.svg)

second initial condition 
![{\displaystyle y'(x)={\frac {d}{dx}}y(x)={\frac {d}{dx}}e^{-2x}[cos(3x)+Bsin(3x)]\!}](../../../cbb043b16f50f0ecab2705db00e771bca7457aba.svg)
![{\displaystyle y'(x)=e^{-2x}[(-2B-3)sin(3x)+(3B-2)cos(3x)]\!}](../../../30434049e26751b730283ee9687ba5ea0a8e815c.svg)
![{\displaystyle y'(0)=e^{-2*0}[(-2B-3)sin(3*0)+(3B-2)cos(3*0)]\!}](../../../be62daa0beda99ce3a4804d3ccce9faedbef87f6.svg)


so the solution to our L2-ODE-CC is
![{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}](../../../7bbd97a09c6c3f88feb037232191230bd797f00d.svg)
Solution to R2.6
After solving for the constants
and
we have the following homogeneous equation

Characteristic Equation and Roots


We have a real double root 
Homogeneous Solution
We know the homogeneous solution to a L2-ODE-CC with a double real root to be

Assuming object starts from rest
, 
Plugging in
and applying our first initial condition


Taking the derivative and applying our second condition




Giving us the final solution

Plots
Solution to this Equation
![{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}](../../../7bbd97a09c6c3f88feb037232191230bd797f00d.svg)

Superimposed Graph
Our solution:
shown in blue
Equation for fig. in R2.1 p.3-7:
shown in red
Equation for fig. in R2.6 p.5-6:
shown in green

Egm4313.s12.team11.imponenti 03:38, 8 February 2012 (UTC)