Triangle/Nine-point circle/Fact/Proof

< Triangle < Nine-point circle < Fact
Proof
  1. Let be the circumcenter of the triangle; we may assume that this point is the origin of a Cartesian coordinate system. We consider the point

    The distance between the midpoint of the side connecting and and is

    Since the norms of all vertices are equal due to the choice of , it follows that is the circumcenter of the triangle given by the midpoints of the original triangle, and that its radius is the half of the radius of the circumcircle.

  2. By fact, is the orthocenter. Therefore, the midpoint of the line segment between and the orthocenter equals

    The distance between this point and is

  3. Note that the points constructed in (1) and (2) lie on the circle opposite to each other. Indeed, we have

    which is the center of . Hence, for each side, its midpoint, the midpoint between the opposite vertex and the orthocenter, and the foot of the corresponding altitude form a right triangle. Its circle with the hypotenuse as diameter equals .