Signal Types (1A)

Copyright (c) 2025 - 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Acceptable Signal Types for Synthesis – std logic 1164

- Used for wires
- Used for busses that are treated as a collection of wires
- 2 types
- std_logic
- std_logic_vector
- Operators
- Comparison*: =, /=
- Shifting: srl, sll, rol, ror
- Boolean: not, and, or, nand, nor, xor, xnor
- Concatenation: &
- * Comparison of std_logic_vectors can return unexpected results Limited to = and /=

Acceptable Signal Types for Synthesis – numeric std

- Used for busses that are treated as a signal collectively
- 2 types
- signed array of std_logic (analogous to a std_logic_vector)
- unsigned array of std_logic (analogous to a std_logic_vector)
- Values
- signed is interpreted as 2's complement (positive and negative)
- unsigned is interpreted as unsigned magnitude (always positive)
- Physical implementation
- Signed and unsigned signals are implemented identically as a group of wires
- Synthesis
- Different logic solutions may be created for signed and unsigned signals due to their interpretation as signed or unsigned values

Acceptable Signal Types for Synthesis – numeric_std

```
    Operators
```

- Comparison: =, /=, <, <=, >, >=
- Shifting: srl, sll, rol, ror
- Boolean: not[†], and, or, nand, nor, xor, xnor
- Concatenation: &
- Arithmetic††:
- - †††
- abs †††
- +, -
- *, / ††††
- mod, rem
- ** ††††

† negation of 2's complement most negative value will return the most negative value †† arithmetic operators other than multiplication preserve the length of the result vector i.e. wrap

††† signed only

†††† * and / will create large logical solutions

††††† only use with a base of 2

Acceptable Signal Types for Synthesis – numeric_std

- Functions
- resize resize unsigned using zero extension resize signed using sign extension
- shift_right() unsigned using zero extension signed using sign extension
- shift_left() uses zero extension for signed and unsigned
- rotate_right() more robust solution for signed and unsigned signals
- rotate left() more robust solution for signed and unsigned signals

Numeric Std Conversions

Acceptable Signal Types for Synthesis – numeric_std

- Functions
- resize resize unsigned using zero extension resize signed using sign extension
- shift_right() unsigned using zero extension signed using sign extension
- shift_left() uses zero extension for signed and unsigned
- rotate_right() more robust solution for signed and unsigned signals
- rotate_left() more robust solution for signed and unsigned signals

```
Signal type conversion – examples

    std logic vector to signed

signed sig <= signed(slv sig);
sum sig <= (signed(slv sig1) + signed(slv sig2));</pre>

    unsigned to std logic vector

slv sig <= std logic vector(unsigned sig);
slv sig <= std logic vector(unsigned sig1 – unsigned sig2);

    integer to signed

signed sig <= to signed(int val, num bits); -- set signed sig to int val using numbits

    unsigned to integer

wire val <= slv sig(to integer(addr sig)); -- choose addr sig wire in slv sig vector

    std logic vector to integer

wire val <= slv sig(to integer(signed(slv sig2))); -- must covert to signed or unsigned

    integer to std logic vector

slv sig <= std logic vector(to signed(int val, num bits)); -- must covert to signed or
unsigned
```

References

- [1] http://en.wikipedia.org/
- [2] J. V. Spiegel, VHDL Tutorial, http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
- [3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL
- [4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems
- [5] D. Smith, HDL Chip Design
- [6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html
- [7] VHDL Tutorial VHDL onlinewww.vhdl-online.de/tutorial/