
Young Won Lim
06/12/2025

Sequential Signal Assignment (4A)

Young Won Lim
06/12/2025

 Copyright (c) 2025 - 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Sequential Signal Assignment 3 Young Won Lim
06/12/2025

Sequential Signal Assignment Statement

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

Within a process, statements are indeed
carried out sequentially.

However, values assigned to signals
are not carried out immediately
but scheduled to occur at the end of the
process.

when the assignment c <= a; is carried out,
the value of a is still the value a had
at the start of the process.

This is because the assignment a <= b;
has not yet been carried out
and a has not changed.

Sequential Signal Assignment 4 Young Won Lim
06/12/2025

Multiple Assignment

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

In fact, the assignment a <= b;
will never be carried out

because of the fourth assignment a <= c;,
which will be scheduled to occur
at the process end instead.

This behaviour reflects the behaviour of real
logic circuitry, which is what VHDL was
designed to do.

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

Sequential Signal Assignment 5 Young Won Lim
06/12/2025

Think reverse order

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

try to read statements in reverse order:

a <= c -- the a register gets whatever was in the c register

c <= a -- the c register gets whatever was in the a register

b <= c -- the b register gets whatever was in the c register

a <= b -- this statement is ignored.

no two drivers for a single FF input

multiple assignments to a signal in a process statement,

only the last assigned value is considered

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

Sequential Signal Assignment 6 Young Won Lim
06/12/2025

Synthesis Results (1)

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

 b_reg and a_reg are exactly the same
(i.e. they each clock the same signal in and out).

If this simple example were to be synthesized,
one of them would almost certainly be removed,
and bout would be tied to aout.

In fact, it took some keep attributes just to tell Vivado
not to eliminate the b_reg for the RTL.

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

Sequential Signal Assignment 7 Young Won Lim
06/12/2025

Synthesis Results (2)

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

a_reg

b_reg

c_reg

cout

aout

bout

synthesized results by Vivado

Sequential Signal Assignment 8 Young Won Lim
06/12/2025

Simulation Results (1)

In VHDL, statements in process

are executed sequentially.

a, b, c and d are signals

a <= b;

c <= a;

At the end of the process

old value of b assigned to a. and

old value of a assigned to c.

statements in process executed sequentially,

but the signals don't get the new values

before end of the process.

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

the initial value of the signal before rising edge of
clock.

a=1; b=1; c=0;

In the rising edge of clock,

the statements in the process executed.

so at the end of process

the new value of signals are:

a = old c = 0;

b = old c = 0;

c = old a = 1;

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

Sequential Signal Assignment 9 Young Won Lim
06/12/2025

Simulation Results (2)

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

process(clk) is

begin

 if rising_edge(clk) then

 a <= b;

 b <= c;

 c <= a;

 a <= c;

 end if;

end process;

 a

b

 c

a <= c

b <= c

c <= a

Sequential Signal Assignment 10 Young Won Lim
06/12/2025

Sequential Statement

https://electronics.stackexchange.com/qauestions/372181/process-statements-and-sequential-execution-in-vhdl

Sequential Signal Assignment 11 Young Won Lim
06/12/2025

Updating signal values and running processes

signals represent the interface

between the concurrent domain of a VHDL model

and the sequential domain within a process.

A VHDL model is composed of several processes

that communicate via signals.

At simulation, all hierarchy of the model is removed and

only the processes and signals remain.

The simulator alternates

between updating signal values and then

running processes activated by changes

of the signals listed in their sensitivity lists

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 12 Young Won Lim
06/12/2025

Signal Assignment

Signal assignment may be performed

using a sequential statement or a concurrent statement.

The sequential statement may

only appear inside a process,

while the concurrent statement may

only appear outside processes.

The sequential signal assignment has a single form,

the simple one, which is an unconditional assignment.

The concurrent signal assignment has,

in addition to its simple form, two other forms:

the conditional assignment and

the selective assignment .

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 13 Young Won Lim
06/12/2025

Sequential Signal Assignment Statement

The sequential signal assignment has the same syntax

as the simple form of the concurrent signal assignment;

the difference between them results from context.

the sequential signal assignment has the following syntax:

signal <= expression [after delay];

as a result of executing this statement in a process,

the expression on the right-hand side of the assignment symbol

is evaluated and an event is scheduled to change the value of the signal.

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 14 Young Won Lim
06/12/2025

When the process suspends

The simulator will only change the value of a signal

when the process suspends, and,

if the after clause is used,

after the delay specified from the current time.

Therefore, in a process the signals will be updated

only after executing all the statements of the process or

when a wait statement is encountered.

Typically, synthesis tools do not allow to use after clauses,

or they ignore these clauses.

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 15 Young Won Lim
06/12/2025

Delay and synthesis

The after clauses are ignored not only because

their interpretation for synthesis is not specified by standards,

but also because it would be difficult to guarantee the results of such delays.

For example, it is not clear whether the delay

should be interpreted as a minimum or maximum propagation delay.

Also, it is not clear how the synthesis tool should proceed

if a delay specified in the source code cannot be assured

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 16 Young Won Lim
06/12/2025

Multiple assignments

A consequence of the way in which

signal assignments within processes are executed is that

when more than one value is assigned to the same signal,

only the last assignment will be effective.

Thus, the two processes are equivalent.

proc7: process (a)

begin

z <= '0';

z <= a;

end process proc7;

proc8: process (a)

begin

z <= a;

end process proc8;

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 17 Young Won Lim
06/12/2025

When the process suspends

In conclusion, the following important aspects

should be taken into consideration

when signal assignment statements are used inside processes:

• Any signal assignment becomes effective

 only when the process suspends.

 Until that moment, all signals keep their old values.

• Only the last assignment to a signal

 will be effectively executed.

 Therefore, it would make no sense

 to assign more than one value to a signal

 in the same process

https://cse.usf.edu/~haozheng/teach/cda4253/doc/vhdl-stmt.pdf

Sequential Signal Assignment 18 Young Won Lim
06/12/2025

Zero time

No event will ever occur while a process is running!

When a process is woken by an event,

it runs to completion ("end process")

or an explicit "wait" statement,

and goes to sleep.

This takes, notionally, ZERO time.

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

if you have loops in your process,

they are effectively unrolled completely, and

when you synthesise, you will generate enough
hardware

to run EVERY iteration in parallel.

Also, any procedures, functions etc, take zero time

- unless they contained an explicit "wait" statement

(in which case the process suspends at the "wait",

as if the procedure had been inlined).

Sequential Signal Assignment 19 Young Won Lim
06/12/2025

No event when a process is running

No event will ever occur while a process is running!

When a process is woken by an event,

it runs to completion ("end process")

or an explicit "wait" statement,

and goes to sleep.

This takes, notionally, ZERO time.

Throughout this process,

all signals have the value

they originally had when the process woke up,

and any signal assignments are stored up,

to happen later.

Variables update immediately;

later statements in the process see the new value).

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 20 Young Won Lim
06/12/2025

Restarting a process

When the process suspends (at "wait" or "end process"),

nothing happens until ALL the other processes also suspend.

(But remember they all take zero time!).

If a process suspends at "end process"

it will restart from the beginning

when its sensitivity list wakes it up.

If it suspends at an explicit "wait",

that "wait" will specify an event or future time,

which will restart it after the "Wait".

NOTES:

1 : do not mix the sensitivity list and Wait styles in the same process!

2: Wait Until some event is synthesisable (though some tools may object) ;

 Wait for some time is simulation only

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 21 Young Won Lim
06/12/2025

Performing all the signal assignments

THEN all the signal assignments are performed.

Since all processes are asleep,

this eliminates all race conditions and timing hazards.

Some of these assignments (like '1' to a clock)

will cause events to be scheduled on processes sensitive to them.

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 22 Young Won Lim
06/12/2025

Delta cycle

After all the signal assignments are done,

the time steps forward one infinitely short tick (called a delta cycle),

and then all the processes with scheduled events are woken.

This continues until a delta cycle occurs

in which NO new events are scheduled, and

finally the simulation can advance by a real time step.

process(clk)

begin

if rising_edge(clk) then

 A <= B;

 B <= A;

end if;

end process;

is hazard-free in VHDL.

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 23 Young Won Lim
06/12/2025

Verilog

If you ever need to use Verilog,

be aware that some of this happens differently there,

and you cannot rely on the same level of predictability in simulation results.

In synthesis, of course, we generate hardware

which will take some real time to execute this process.

However, the synthesis and back-end tools (place and route)

guarantee to either obey this model faithfully,

or fail and report why they failed.

For example, they will add up all the real delays and

verify that the sum is less than your specified clock period.

(Unless you have set the clock speed too high!).

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 24 Young Won Lim
06/12/2025

Zero time

So the upshot is, as long as the tools report success

(and you are setting the timing constraints like clock speed correctly)

you can pretend the above "zero time" model is true,

and the real hardware behaviour will match the simulation.

Guaranteed, barring tool bugs!

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 25 Young Won Lim
06/12/2025

Reentrant?

When starting out using VHDL (or any other HDL for that matter),

it is hugely important to discard all notions of sequential code,

and instead focus on the flow of data through the hardware.

In hardware, everything is inherently parallel

(everything happens simultaneously),

but uses constantly changing data (input signals)

to calculate constantly changing results (output signals)!

Without going into more advanced topics

such as variables, wait commands etc.,

everything within a process happens simultaneously.

If conflicting things occur within the same process

(multiple writes to the same signal),

the last statement in the process wins,

which is often where confusion about "sequential" code in VHDL comes from.

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 26 Young Won Lim
06/12/2025

Delta

This works due to the way that values are assigned to signals.

When assigning a value to a signal,

the value of the signal does not immediately change!

Instead, the assigned value is remembered and

will be committed as the actual signal value later

(in preparation for the next delta cycle,

which is effectively the next quantum of time).

Since the next delta cycle will not begin

until all processes from the previous delta cycle have completed,

signal values will only change when no process is running.

Once all signals have changed, the next delta cycle begins

and any process sensitive to one of the changed signals will be executed.

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Sequential Signal Assignment 27 Young Won Lim
06/12/2025

Combinatorial loop

If a process is sensitive to a signal it also writes,

you have what is known as a combinatorial loop,

e.g., a gate where the output feeds an input.

This is (almost) always an error in your circuit,

and will usually cause simulators to enter an infinite delta-cycle loop.

https://stackoverflow.com/questions/13954193/is-process-in-vhdl-reentrant/

Young Won Lim
06/12/2025

References

[1] http://en.wikipedia.org/
[2] J. V. Spiegel, VHDL Tutorial,

http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
[3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL
[4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems
[5] D. Smith, HDL Chip Design
[6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html
[7] VHDL Tutorial - VHDL onlinewww.vhdl-online.de/tutorial/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

