From the definition of a contravariant vector (contravariant tensor of rank 1)

we get the transformation matrix from the partial derivatives

In order to calculate the transformation matrix, we need the equations relating the two coordinates systems. For cartesian to polar, we have


and for polar to cartesian


So if we designate
as the bar coordinates, then the transformation components from polar coordinates
to cartesian coordinates
is calculated as




The components from cartesian coordinates to polar coordinates transform the same way, but now the polar coordinates have the bar




In summary, the {\mathbf components of contravariant vectors} in cartesian coordinates and polar coordinates transform between each other according to
![{\displaystyle \left[{\begin{matrix}x\\y\end{matrix}}\right]=\left[{\begin{matrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{matrix}}\right]\left[{\begin{matrix}r\\\theta \end{matrix}}\right]}](../2a4f57b8e2adb195b73eb022ef4a5ce2784a9bf0.svg)
![{\displaystyle \left[{\begin{matrix}r\\\theta \end{matrix}}\right]=\left[{\begin{matrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&{\frac {y}{\sqrt {x^{2}+y^{2}}}}\\-{\frac {y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}\end{matrix}}\right]\left[{\begin{matrix}x\\y\end{matrix}}\right]}](../2c7df765ce8c26df87c9556afe72b23900e6789f.svg)