From the definition of a covariant vector (covariant tensor of rank 1)

the corresponding transformation matrix is

In order to calculate the transformation matrix, we need the equations relating the two coordinates systems. For cartesian to polar, we have

and for polar to cartesian

So if we designate
as the bar coordinates, then the transformation components from a polar basis vector
to a cartesian basis vector
is calculted as




The components of cartesian basis vectors to polar basis vectors transform the same way, but now the polar coordinates have the bar




In summary, the {\mathbf components of covariant basis vectors} in cartesian coordinates and polar coordinates transform between each other according to
![{\displaystyle \left[{\begin{matrix}{\hat {e}}_{x}\\{\hat {e}}_{y}\end{matrix}}\right]=\left[{\begin{matrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&-{\frac {y}{x^{2}+y^{2}}}\\{\frac {y}{\sqrt {x^{2}+y^{2}}}}&{\frac {x}{x^{2}+y^{2}}}\end{matrix}}\right]\left[{\begin{matrix}{\hat {e}}_{r}\\{\hat {e}}_{\theta }\end{matrix}}\right]}](../c7343b774f6a2d19c000a3b6dc0b481c9e1f682b.svg)
![{\displaystyle \left[{\begin{matrix}{\hat {e}}_{r}\\{\hat {e}}_{\theta }\end{matrix}}\right]=\left[{\begin{matrix}\cos \theta &\sin \theta \\-r\sin \theta &r\cos \theta \end{matrix}}\right]\left[{\begin{matrix}{\hat {e}}_{x}\\{\hat {e}}_{y}\end{matrix}}\right]}](../8ba7cdd2ec9002afafbd7cbe9b9b0c99735a4e74.svg)