Figure 1 shows a linear three-noded triangular element in the reference configuration.
Solutions
Part 2
Derive expressions for the deformation gradient and the Jacobian determinant for the element as functions of time.
The deformation gradient is given by
F
=
[
∂
x
∂
X
∂
x
∂
Y
∂
x
∂
Z
∂
y
∂
X
∂
y
∂
Y
∂
y
∂
Z
∂
z
∂
X
∂
z
∂
Y
∂
z
∂
Z
]
.
{\displaystyle \mathbf {F} =\left[{\begin{aligned}{\frac {\partial x}{\partial X}}&&{\frac {\partial x}{\partial Y}}&&{\frac {\partial x}{\partial Z}}\\{\frac {\partial y}{\partial X}}&&{\frac {\partial y}{\partial Y}}&&{\frac {\partial y}{\partial Z}}\\{\frac {\partial z}{\partial X}}&&{\frac {\partial z}{\partial Y}}&&{\frac {\partial z}{\partial Z}}\end{aligned}}\right]~.}
Before computing the derivatives, let us express
x
,
y
,
z
{\displaystyle x,y,z}
in terms of
X
,
Y
,
Z
{\displaystyle X,Y,Z}
. Recall
x
(
ξ
,
t
)
=
∑
i
=
1
3
x
i
(
t
)
N
i
(
ξ
)
;
y
(
ξ
,
t
)
=
∑
i
=
1
3
y
i
(
t
)
N
i
(
ξ
)
{\displaystyle x({\boldsymbol {\xi }},t)=\sum _{i=1}^{3}x_{i}(t)~N_{i}({\boldsymbol {\xi }})~;\qquad y({\boldsymbol {\xi }},t)=\sum _{i=1}^{3}y_{i}(t)~N_{i}({\boldsymbol {\xi }})}
Therefore,
x
(
ξ
,
t
)
=
x
1
(
t
)
[
1
−
X
(
ξ
)
2
−
Y
(
ξ
)
]
+
x
2
(
t
)
X
(
ξ
)
2
+
x
3
(
t
)
Y
(
ξ
)
y
(
ξ
,
t
)
=
y
1
(
t
)
[
1
−
X
(
ξ
)
2
−
Y
(
ξ
)
]
+
y
2
(
t
)
X
(
ξ
)
2
+
y
3
(
t
)
Y
(
ξ
)
z
(
ξ
,
t
)
=
Z
(
ξ
)
{\displaystyle {\begin{aligned}x({\boldsymbol {\xi }},t)&=x_{1}(t)~\left[1-{\cfrac {X({\boldsymbol {\xi }})}{2}}-Y({\boldsymbol {\xi }})\right]+x_{2}(t)~{\cfrac {X({\boldsymbol {\xi }})}{2}}+x_{3}(t)~Y({\boldsymbol {\xi }})\\y({\boldsymbol {\xi }},t)&=y_{1}(t)~\left[1-{\cfrac {X({\boldsymbol {\xi }})}{2}}-Y({\boldsymbol {\xi }})\right]+y_{2}(t)~{\cfrac {X({\boldsymbol {\xi }})}{2}}+y_{3}(t)~Y({\boldsymbol {\xi }})\\z({\boldsymbol {\xi }},t)&=Z({\boldsymbol {\xi }})\end{aligned}}}
Substituting in the expressions for
x
i
{\displaystyle x_{i}}
and
y
i
{\displaystyle y_{i}}
, we get
x
(
ξ
,
t
)
=
[
2
(
1
+
a
t
)
cos
π
t
2
]
X
(
ξ
)
2
−
[
(
1
+
b
t
)
sin
π
t
2
]
Y
(
ξ
)
y
(
ξ
,
t
)
=
[
2
(
1
+
a
t
)
sin
π
t
2
]
X
(
ξ
)
2
+
[
(
1
+
b
t
)
cos
π
t
2
]
Y
(
ξ
)
z
(
ξ
,
t
)
=
Z
(
ξ
)
.
{\displaystyle {\begin{aligned}x({\boldsymbol {\xi }},t)&=\left[2(1+at)\cos {\cfrac {\pi t}{2}}\right]~{\cfrac {X({\boldsymbol {\xi }})}{2}}-\left[(1+bt)\sin {\cfrac {\pi t}{2}}\right]~Y({\boldsymbol {\xi }})\\y({\boldsymbol {\xi }},t)&=\left[2(1+at)\sin {\cfrac {\pi t}{2}}\right]~{\cfrac {X({\boldsymbol {\xi }})}{2}}+\left[(1+bt)\cos {\cfrac {\pi t}{2}}\right]~Y({\boldsymbol {\xi }})\\z({\boldsymbol {\xi }},t)&=Z({\boldsymbol {\xi }})~.\end{aligned}}}
In the above expression, the parent coordinates
ξ
{\displaystyle {\boldsymbol {\xi }}}
are no longer useful. Therefore, we write
x
(
X
,
t
)
=
X
(
1
+
a
t
)
cos
π
t
2
−
Y
(
1
+
b
t
)
sin
π
t
2
y
(
X
,
t
)
=
X
(
1
+
a
t
)
sin
π
t
2
+
Y
(
1
+
b
t
)
cos
π
t
2
z
(
X
,
t
)
=
Z
{\displaystyle {\begin{aligned}x(\mathbf {X} ,t)&=X~(1+at)~\cos {\cfrac {\pi t}{2}}-Y~(1+bt)~\sin {\cfrac {\pi t}{2}}\\y(\mathbf {X} ,t)&=X~(1+at)~\sin {\cfrac {\pi t}{2}}+Y~(1+bt)~\cos {\cfrac {\pi t}{2}}\\z(\mathbf {X} ,t)&=Z\end{aligned}}}
where
X
=
(
X
,
Y
,
Z
)
{\displaystyle \mathbf {X} =(X,Y,Z)}
. Taking derivatives, we get
∂
x
∂
X
=
(
1
+
a
t
)
cos
π
t
2
∂
x
∂
Y
=
−
(
1
+
b
t
)
sin
π
t
2
∂
x
∂
Z
=
0
∂
y
∂
X
=
(
1
+
a
t
)
sin
π
t
2
∂
y
∂
Y
=
(
1
+
b
t
)
cos
π
t
2
∂
y
∂
Z
=
0
∂
z
∂
X
=
0
∂
z
∂
Y
=
0
∂
z
∂
Z
=
1
{\displaystyle {\begin{aligned}{\frac {\partial x}{\partial X}}&=(1+at)~\cos {\cfrac {\pi t}{2}}\qquad &{\frac {\partial x}{\partial Y}}&=-(1+bt)~\sin {\cfrac {\pi t}{2}}\qquad &{\frac {\partial x}{\partial Z}}&=0\\{\frac {\partial y}{\partial X}}&=(1+at)~\sin {\cfrac {\pi t}{2}}\qquad &{\frac {\partial y}{\partial Y}}&=(1+bt)~\cos {\cfrac {\pi t}{2}}\qquad &{\frac {\partial y}{\partial Z}}&=0\\{\frac {\partial z}{\partial X}}&=0\qquad &{\frac {\partial z}{\partial Y}}&=0\qquad &{\frac {\partial z}{\partial Z}}&=1\end{aligned}}}
Therefore,
F
(
t
)
=
[
(
1
+
a
t
)
cos
π
t
2
−
(
1
+
b
t
)
sin
π
t
2
0
(
1
+
a
t
)
sin
π
t
2
(
1
+
b
t
)
cos
π
t
2
0
0
0
1
]
.
{\displaystyle {\mathbf {F} (t)=\left[{\begin{aligned}(1+at)~\cos {\cfrac {\pi t}{2}}&&-(1+bt)~\sin {\cfrac {\pi t}{2}}&&0\\(1+at)~\sin {\cfrac {\pi t}{2}}&&(1+bt)~\cos {\cfrac {\pi t}{2}}&&0\\0&&0&&1\end{aligned}}\right]~.}}
The Jacobian determinant is
J
(
t
)
=
det
F
(
t
)
=
[
(
1
+
a
t
)
cos
π
t
2
]
[
(
1
+
b
t
)
cos
π
t
2
]
+
[
(
1
+
b
t
)
sin
π
t
2
]
[
(
1
+
a
t
)
sin
π
t
2
]
.
{\displaystyle J(t)=\det \mathbf {F} (t)=\left[(1+at)~\cos {\cfrac {\pi t}{2}}\right]\left[(1+bt)~\cos {\cfrac {\pi t}{2}}\right]+\left[(1+bt)~\sin {\cfrac {\pi t}{2}}\right]\left[(1+at)~\sin {\cfrac {\pi t}{2}}\right]~.}
or
J
(
t
)
=
(
1
+
a
t
)
(
1
+
b
t
)
.
{\displaystyle {J(t)=(1+at)(1+bt)~.}}
Part 3
What are the values of
a
{\displaystyle a}
and
b
{\displaystyle b}
for which the motion is isochoric?
For isochoric motion,
J
=
1
{\displaystyle J=1}
. Therefore,
(
1
+
a
t
)
(
1
+
b
t
)
=
1
.
{\displaystyle (1+at)(1+bt)=1~.}
One possibility is
a
=
b
=
0
{\displaystyle {a=b=0}}
This is a pure rotation.
Another possibility is that
b
=
−
a
1
+
a
t
{\displaystyle {b=-{\cfrac {a}{1+at}}}}
This is a combination of shear and rotation where the volume remains constant.
Part 4
For which values of
a
{\displaystyle a}
and
b
{\displaystyle b}
do we get invalid motions?
We get invalid motions when
J
≤
0
{\displaystyle J\leq 0}
. Let us consider the case where
J
=
0
{\displaystyle J=0}
. Then
(
1
+
a
t
)
(
1
+
b
t
)
=
0
{\displaystyle (1+at)(1+bt)=0}
This is possible when
a
t
=
−
1
or
b
t
=
−
1
.
{\displaystyle at=-1~{\text{or}}~bt=-1~.}
If
J
<
0
{\displaystyle J<0}
then
1
+
a
t
<
0
and
1
+
b
t
>
0
or
1
+
a
t
>
0
and
1
+
b
t
<
0
{\displaystyle 1+at<0~{\text{and}}~1+bt>0\qquad {\text{or}}\qquad 1+at>0~{\text{and}}~1+bt<0}
That is,
a
t
<
−
1
and
b
t
>
−
1
or
a
t
>
−
1
and
b
t
<
−
1
{\displaystyle at<-1~{\text{and}}~bt>-1\qquad {\text{or}}\qquad at>-1~{\text{and}}~bt<-1}
Therefore the values at which we get invalid motions are
a
≤
−
1
t
or
b
≤
−
1
t
.
{\displaystyle {a\leq -{\cfrac {1}{t}}~~{\text{or}}~~b\leq -{\cfrac {1}{t}}~.}}
Part 5
Derive the expression for the Green (Lagrangian) strain tensor
for the element as a function of time.
The Green strain tensor is given by
E
=
1
2
(
F
T
F
−
I
)
{\displaystyle \mathbf {E} ={\frac {1}{2}}(\mathbf {F} ^{T}\mathbf {F} -\mathbf {I} )}
Recall
F
(
t
)
=
[
(
1
+
a
t
)
cos
π
t
2
−
(
1
+
b
t
)
sin
π
t
2
0
(
1
+
a
t
)
sin
π
t
2
(
1
+
b
t
)
cos
π
t
2
0
0
0
1
]
.
{\displaystyle \mathbf {F} (t)=\left[{\begin{aligned}(1+at)~\cos {\cfrac {\pi t}{2}}&&-(1+bt)~\sin {\cfrac {\pi t}{2}}&&0\\(1+at)~\sin {\cfrac {\pi t}{2}}&&(1+bt)~\cos {\cfrac {\pi t}{2}}&&0\\0&&0&&1\end{aligned}}\right]~.}
Let us make the following substitutions
A
:=
(
1
+
a
t
)
;
B
:=
(
1
+
b
t
)
;
c
:=
cos
π
t
2
;
s
:=
sin
π
t
2
.
{\displaystyle A:=(1+at)~;~~B:=(1+bt)~;~~c:=\cos {\cfrac {\pi t}{2}}~;~~s:=\sin {\cfrac {\pi t}{2}}~.}
Then
F
=
[
A
c
−
B
s
0
A
s
B
c
0
0
0
1
]
and
F
T
=
[
A
c
A
s
0
−
B
s
B
c
0
0
0
1
]
.
{\displaystyle \mathbf {F} ={\begin{bmatrix}A~c&-B~s&0\\A~s&B~c&0\\0&0&1\end{bmatrix}}~~{\text{and}}~~\mathbf {F} ^{T}={\begin{bmatrix}A~c&A~s&0\\-B~s&B~c&0\\0&0&1\end{bmatrix}}~.}
Therefore,
F
T
F
=
[
A
2
0
0
0
B
2
0
0
0
1
]
=
[
(
1
+
a
t
)
2
0
0
0
(
1
+
b
t
)
2
0
0
0
1
]
.
{\displaystyle \mathbf {F} ^{T}~\mathbf {F} ={\begin{bmatrix}A^{2}&0&0\\0&B^{2}&0\\0&0&1\end{bmatrix}}={\begin{bmatrix}(1+at)^{2}&0&0\\0&(1+bt)^{2}&0\\0&0&1\end{bmatrix}}~.}
Hence,
E
=
1
2
(
[
(
1
+
a
t
)
2
0
0
0
(
1
+
b
t
)
2
0
0
0
1
]
−
[
1
0
0
0
1
0
0
0
1
]
)
{\displaystyle \mathbf {E} ={\frac {1}{2}}\left({\begin{bmatrix}(1+at)^{2}&0&0\\0&(1+bt)^{2}&0\\0&0&1\end{bmatrix}}-{\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}\right)}
The Green strain is
E
(
t
)
=
1
2
[
2
a
t
+
a
2
t
2
0
0
0
2
b
t
+
b
2
t
2
0
0
0
0
]
{\displaystyle {\mathbf {E} (t)={\frac {1}{2}}{\begin{bmatrix}2at+a^{2}t^{2}&0&0\\0&2bt+b^{2}t^{2}&0\\0&0&0\end{bmatrix}}}}
Part 6
Derive an expression for the velocity gradient as a function of
time.
The velocity is the material time derivative of the motion.
Recall that the motion is given by
x
(
X
,
t
)
=
X
(
1
+
a
t
)
cos
π
t
2
−
Y
(
1
+
b
t
)
sin
π
t
2
y
(
X
,
t
)
=
X
(
1
+
a
t
)
sin
π
t
2
+
Y
(
1
+
b
t
)
cos
π
t
2
z
(
X
,
t
)
=
Z
{\displaystyle {\begin{aligned}x(\mathbf {X} ,t)&=X~(1+at)~\cos {\cfrac {\pi t}{2}}-Y~(1+bt)~\sin {\cfrac {\pi t}{2}}\\y(\mathbf {X} ,t)&=X~(1+at)~\sin {\cfrac {\pi t}{2}}+Y~(1+bt)~\cos {\cfrac {\pi t}{2}}\\z(\mathbf {X} ,t)&=Z\end{aligned}}}
Therefore,
v
x
(
X
,
t
)
=
∂
x
∂
t
=
X
[
a
cos
π
t
2
−
(
1
+
a
t
)
π
2
sin
π
t
2
]
−
Y
[
b
sin
π
t
2
+
(
1
+
b
t
)
π
2
cos
π
t
2
]
v
y
(
X
,
t
)
=
∂
y
∂
t
=
X
[
a
sin
π
t
2
+
(
1
+
a
t
)
π
2
cos
π
t
2
]
+
Y
[
b
cos
π
t
2
−
(
1
+
b
t
)
π
2
sin
π
t
2
]
v
z
X
,
t
)
=
∂
z
∂
t
=
0
{\displaystyle {\begin{aligned}v_{x}(\mathbf {X} ,t)={\frac {\partial x}{\partial t}}&=X~\left[a~\cos {\cfrac {\pi t}{2}}-(1+at)~{\cfrac {\pi }{2}}~\sin {\cfrac {\pi t}{2}}\right]-Y~\left[b~\sin {\cfrac {\pi t}{2}}+(1+bt)~{\cfrac {\pi }{2}}~\cos {\cfrac {\pi t}{2}}\right]\\v_{y}(\mathbf {X} ,t)={\frac {\partial y}{\partial t}}&=X~\left[a~\sin {\cfrac {\pi t}{2}}+(1+at)~{\cfrac {\pi }{2}}~\cos {\cfrac {\pi t}{2}}\right]+Y~\left[b~\cos {\cfrac {\pi t}{2}}-(1+bt)~{\cfrac {\pi }{2}}~\sin {\cfrac {\pi t}{2}}\right]\\v_{z}\mathbf {X} ,t)={\frac {\partial z}{\partial t}}&=0\end{aligned}}}
We could compute the velocity gradient using
l
=
∇
v
=
[
∂
v
x
∂
x
∂
v
x
∂
y
∂
v
x
∂
z
∂
v
y
∂
x
∂
v
y
∂
y
∂
v
y
∂
z
∂
v
z
∂
x
∂
v
z
∂
y
∂
v
z
∂
z
]
{\displaystyle \mathbf {l} ={\boldsymbol {\nabla }}\mathbf {v} =\left[{\begin{aligned}{\frac {\partial v_{x}}{\partial x}}&&{\frac {\partial v_{x}}{\partial y}}&&{\frac {\partial v_{x}}{\partial z}}\\{\frac {\partial v_{y}}{\partial x}}&&{\frac {\partial v_{y}}{\partial y}}&&{\frac {\partial v_{y}}{\partial z}}\\{\frac {\partial v_{z}}{\partial x}}&&{\frac {\partial v_{z}}{\partial y}}&&{\frac {\partial v_{z}}{\partial z}}\end{aligned}}\right]}
after expressing
v
{\displaystyle \mathbf {v} }
in terms of
x
{\displaystyle \mathbf {x} }
. However, that makes the expression quite complicated. Instead, we will use the relation
l
=
F
˙
F
−
1
.
{\displaystyle \mathbf {l} ={\dot {\mathbf {F} }}~\mathbf {F} ^{-1}~.}
The time derivative of the deformation gradient is
F
˙
=
[
a
cos
π
t
2
−
(
1
+
a
t
)
π
2
sin
π
t
2
−
b
sin
π
t
2
−
(
1
+
b
t
)
π
2
cos
π
t
2
0
a
sin
π
t
2
+
(
1
+
a
t
)
π
2
cos
π
t
2
b
cos
π
t
2
−
(
1
+
b
t
)
π
2
sin
π
t
2
0
0
0
0
]
.
{\displaystyle {\dot {\mathbf {F} }}=\left[{\begin{aligned}a~\cos {\cfrac {\pi t}{2}}-(1+at)~{\cfrac {\pi }{2}}~\sin {\cfrac {\pi t}{2}}&&-b~\sin {\cfrac {\pi t}{2}}-(1+bt)~{\cfrac {\pi }{2}}~\cos {\cfrac {\pi t}{2}}&&0\\a~\sin {\cfrac {\pi t}{2}}+(1+at)~{\cfrac {\pi }{2}}~\cos {\cfrac {\pi t}{2}}&&b~\cos {\cfrac {\pi t}{2}}-(1+bt)~{\cfrac {\pi }{2}}~\sin {\cfrac {\pi t}{2}}&&0\\0&&0&&0\end{aligned}}\right]~.}
The inverse of the deformation gradient is
F
−
1
=
1
(
1
+
a
t
)
(
1
+
b
t
)
[
(
1
+
b
t
)
cos
π
t
2
(
1
+
b
t
)
sin
π
t
2
0
−
(
1
+
a
t
)
sin
π
t
2
(
1
+
a
t
)
cos
π
t
2
0
0
0
(
1
+
a
t
)
(
1
+
b
t
)
]
.
{\displaystyle \mathbf {F} ^{-1}={\cfrac {1}{(1+at)(1+bt)}}\left[{\begin{aligned}(1+bt)~\cos {\cfrac {\pi t}{2}}&&(1+bt)~\sin {\cfrac {\pi t}{2}}&&0\\-(1+at)~\sin {\cfrac {\pi t}{2}}&&(1+at)~\cos {\cfrac {\pi t}{2}}&&0\\0&&0&&(1+at)(1+bt)\end{aligned}}\right]~.}
Using the substitutions
A
:=
(
1
+
a
t
)
;
B
:=
(
1
+
b
t
)
;
c
:=
cos
π
t
2
;
s
:=
sin
π
t
2
{\displaystyle A:=(1+at)~;~~B:=(1+bt)~;~~c:=\cos {\cfrac {\pi t}{2}}~;~~s:=\sin {\cfrac {\pi t}{2}}}
we get
F
˙
=
[
a
c
−
A
s
π
2
−
b
s
−
B
c
π
2
0
a
s
+
A
c
π
2
b
c
−
B
s
π
2
0
0
0
0
]
=
[
a
c
−
b
s
0
a
s
b
c
0
0
0
0
]
+
π
2
[
−
A
s
−
B
c
0
A
c
−
B
s
0
0
0
0
]
{\displaystyle {\dot {\mathbf {F} }}=\left[{\begin{aligned}a~c-A~s~{\cfrac {\pi }{2}}&&-b~s-B~c~{\cfrac {\pi }{2}}&&0\\a~s+A~c~{\cfrac {\pi }{2}}&&b~c-B~s~{\cfrac {\pi }{2}}&&0\\0&&0&&0\end{aligned}}\right]=\left[{\begin{aligned}a~c&&-b~s&&0\\a~s&&b~c&&0\\0&&0&&0\end{aligned}}\right]+{\cfrac {\pi }{2}}\left[{\begin{aligned}-A~s&&-B~c&&0\\A~c&&-B~s&&0\\0&&0&&0\end{aligned}}\right]}
and
F
−
1
=
1
A
B
[
B
c
B
s
0
−
A
s
A
c
0
0
0
A
B
]
.
{\displaystyle \mathbf {F} ^{-1}={\cfrac {1}{A~B}}\left[{\begin{aligned}B~c&&B~s&&0\\-A~s&&A~c&&0\\0&&0&&A~B\end{aligned}}\right]~.}
The product is
l
=
1
A
B
[
B
a
c
2
+
A
b
s
2
B
a
c
s
−
A
b
c
s
0
B
a
c
s
−
A
b
c
s
B
a
s
2
+
A
b
c
2
0
0
0
0
]
+
π
2
[
0
−
1
0
1
0
0
0
0
0
]
{\displaystyle \mathbf {l} ={\cfrac {1}{A~B}}\left[{\begin{aligned}B~a~c^{2}+A~b~s^{2}&&B~a~c~s-A~b~c~s&&0\\B~a~c~s-A~b~c~s&&B~a~s^{2}+A~b~c^{2}&&0\\0&&0&&0\end{aligned}}\right]+{\cfrac {\pi }{2}}\left[{\begin{aligned}0&&-1&&0\\1&&0&&0\\0&&0&&0\end{aligned}}\right]}
Note that the first matrix is symmetric while the second is skew-symmetric.
Therefore, the velocity gradient is
l
=
[
a
1
+
a
t
cos
2
π
t
2
+
b
1
+
b
t
sin
2
π
t
2
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
−
π
2
0
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
+
π
2
a
1
+
a
t
sin
2
π
t
2
+
b
1
+
b
t
cos
2
π
t
2
0
0
0
0
]
{\displaystyle {\mathbf {l} =\left[{\begin{aligned}{\cfrac {a}{1+at}}~\cos ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\sin ^{2}{\cfrac {\pi t}{2}}&&\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}-{\frac {\pi }{2}}&&0\\\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}+{\cfrac {\pi }{2}}&&{\cfrac {a}{1+at}}~\sin ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\cos ^{2}{\cfrac {\pi t}{2}}&&0\\0&&0&&0\end{aligned}}\right]}}
Part 7
Compute the rate of deformation tensor and the spin tensor.
The rate of deformation is the symmetric part of the velocity gradient:
d
=
[
a
1
+
a
t
cos
2
π
t
2
+
b
1
+
b
t
sin
2
π
t
2
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
0
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
a
1
+
a
t
sin
2
π
t
2
+
b
1
+
b
t
cos
2
π
t
2
0
0
0
0
]
{\displaystyle {\mathbf {d} =\left[{\begin{aligned}{\cfrac {a}{1+at}}~\cos ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\sin ^{2}{\cfrac {\pi t}{2}}&&\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}&&0\\\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}&&{\cfrac {a}{1+at}}~\sin ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\cos ^{2}{\cfrac {\pi t}{2}}&&0\\0&&0&&0\end{aligned}}\right]}}
The rate of deformation is the skew-symmetric part of the velocity gradient:
w
=
π
2
[
0
−
1
0
1
0
0
0
0
0
]
{\displaystyle {\mathbf {w} ={\cfrac {\pi }{2}}\left[{\begin{aligned}0&&-1&&0\\1&&0&&0\\0&&0&&0\end{aligned}}\right]}}
Part 8
Assume that
a
=
1
{\displaystyle a=1}
and
b
=
2
{\displaystyle b=2}
. Sketch the undeformed configuration and the deformed configuration at
t
=
1
{\displaystyle t=1}
and
t
=
2
{\displaystyle t=2}
. Draw both the deformed and undeformed configurations on the same plot
and label.
Recall that in the initial configuration
X
1
=
x
1
(
0
)
=
0
;
Y
1
=
y
1
(
0
)
=
0
;
X
2
=
x
2
(
0
)
=
2
;
Y
2
=
y
2
(
0
)
=
0
;
X
3
=
x
3
(
0
)
=
0
;
Y
3
=
y
3
(
0
)
=
1
.
{\displaystyle X_{1}=x_{1}(0)=0~;~~Y_{1}=y_{1}(0)=0~;\qquad X_{2}=x_{2}(0)=2~;~~Y_{2}=y_{2}(0)=0~;\qquad X_{3}=x_{3}(0)=0~;~~Y_{3}=y_{3}(0)=1~.}
Also, the motion is
x
(
X
,
t
)
=
X
(
1
+
a
t
)
cos
π
t
2
−
Y
(
1
+
b
t
)
sin
π
t
2
y
(
X
,
t
)
=
X
(
1
+
a
t
)
sin
π
t
2
+
Y
(
1
+
b
t
)
cos
π
t
2
z
(
X
,
t
)
=
Z
{\displaystyle {\begin{aligned}x(\mathbf {X} ,t)&=X~(1+at)~\cos {\cfrac {\pi t}{2}}-Y~(1+bt)~\sin {\cfrac {\pi t}{2}}\\y(\mathbf {X} ,t)&=X~(1+at)~\sin {\cfrac {\pi t}{2}}+Y~(1+bt)~\cos {\cfrac {\pi t}{2}}\\z(\mathbf {X} ,t)&=Z\end{aligned}}}
Plugging in the values of
a
{\displaystyle a}
and
b
{\displaystyle b}
, we get
x
(
X
,
t
)
=
X
(
1
+
t
)
cos
π
t
2
−
Y
(
1
+
2
t
)
sin
π
t
2
y
(
X
,
t
)
=
X
(
1
+
t
)
sin
π
t
2
+
Y
(
1
+
2
t
)
cos
π
t
2
z
(
X
,
t
)
=
Z
{\displaystyle {\begin{aligned}x(\mathbf {X} ,t)&=X~(1+t)~\cos {\cfrac {\pi t}{2}}-Y~(1+2t)~\sin {\cfrac {\pi t}{2}}\\y(\mathbf {X} ,t)&=X~(1+t)~\sin {\cfrac {\pi t}{2}}+Y~(1+2t)~\cos {\cfrac {\pi t}{2}}\\z(\mathbf {X} ,t)&=Z\end{aligned}}}
At
t
=
1
{\displaystyle t=1}
,
x
(
X
,
1
)
=
2
X
cos
π
2
−
3
Y
sin
π
2
=
−
3
Y
y
(
X
,
1
)
=
2
X
sin
π
2
+
3
Y
cos
π
2
=
2
X
z
(
X
,
1
)
=
Z
{\displaystyle {\begin{aligned}x(\mathbf {X} ,1)&=2X~\cos {\cfrac {\pi }{2}}-3Y~\sin {\cfrac {\pi }{2}}=-3Y\\y(\mathbf {X} ,1)&=2X~\sin {\cfrac {\pi }{2}}+3Y~\cos {\cfrac {\pi }{2}}=2X\\z(\mathbf {X} ,1)&=Z\end{aligned}}}
At
t
=
2
{\displaystyle t=2}
,
x
(
X
,
2
)
=
3
X
cos
π
−
5
Y
sin
π
=
−
3
X
y
(
X
,
2
)
=
3
X
sin
π
+
5
Y
cos
π
=
−
5
Y
z
(
X
,
2
)
=
Z
{\displaystyle {\begin{aligned}x(\mathbf {X} ,2)&=3X~\cos \pi -5Y~\sin \pi =-3X\\y(\mathbf {X} ,2)&=3X~\sin \pi +5Y~\cos \pi =-5Y\\z(\mathbf {X} ,2)&=Z\end{aligned}}}
The deformed and undeformed configurations are shown below.
Deformed and undeformed configurations.
Part 9
Compute the polar decomposition of the deformation gradient with the above values of
a
{\displaystyle a}
and
b
{\displaystyle b}
,
The deformation gradient is
F
(
t
)
=
[
(
1
+
t
)
cos
π
t
2
−
(
1
+
2
t
)
sin
π
t
2
0
(
1
+
t
)
sin
π
t
2
(
1
+
2
t
)
cos
π
t
2
0
0
0
1
]
.
{\displaystyle \mathbf {F} (t)=\left[{\begin{aligned}(1+t)~\cos {\cfrac {\pi t}{2}}&&-(1+2t)~\sin {\cfrac {\pi t}{2}}&&0\\(1+t)~\sin {\cfrac {\pi t}{2}}&&(1+2t)~\cos {\cfrac {\pi t}{2}}&&0\\0&&0&&1\end{aligned}}\right]~.}
The right Cauchy-Green deformation tensor is
C
=
F
T
F
=
[
(
1
+
t
)
2
0
0
0
(
1
+
2
t
)
2
0
0
0
1
]
{\displaystyle \mathbf {C} =\mathbf {F} ^{T}~\mathbf {F} ={\begin{bmatrix}(1+t)^{2}&0&0\\0&(1+2t)^{2}&0\\0&0&1\end{bmatrix}}}
The eigenvalue problem is
(
C
−
λ
2
I
)
N
=
0
.
{\displaystyle (\mathbf {C} -\lambda ^{2}\mathbf {I} )\mathbf {N} =0~.}
This problem has a solution if
det
(
C
−
λ
2
I
)
=
0
{\displaystyle \det(\mathbf {C} -\lambda ^{2}\mathbf {I} )=0}
i.e.,
[
λ
4
−
(
1
+
t
)
2
λ
2
−
λ
2
(
1
+
2
t
)
2
+
(
1
+
t
)
2
(
1
+
2
t
)
2
]
(
1
−
λ
2
)
=
0
.
{\displaystyle \left[\lambda ^{4}-(1+t)^{2}\lambda ^{2}-\lambda ^{2}(1+2t)^{2}+(1+t)^{2}~(1+2t)^{2}\right](1-\lambda ^{2})=0~.}
The eigenvalues are (as expected)
λ
1
2
=
(
1
+
t
)
2
;
λ
2
2
=
(
1
+
2
t
)
2
;
λ
3
2
=
1
.
{\displaystyle \lambda _{1}^{2}=(1+t)^{2}~;~~\lambda _{2}^{2}=(1+2t)^{2}~;~~\lambda _{3}^{2}=1~.}
The principal stretches are
λ
1
=
(
1
+
t
)
;
λ
2
=
(
1
+
2
t
)
;
λ
3
=
1
.
{\displaystyle \lambda _{1}=(1+t)~;~~\lambda _{2}=(1+2t)~;~~\lambda _{3}=1~.}
The principal directions are (by inspection)
N
1
=
[
1
0
0
]
T
;
N
2
=
[
0
1
0
]
T
;
N
3
=
[
0
0
1
]
T
.
{\displaystyle \mathbf {N} _{1}=[1~~0~~0]^{T}~;~~\mathbf {N} _{2}=[0~~1~~0]^{T}~;~~\mathbf {N} _{3}=[0~~0~~1]^{T}~.}
Now, the right stretch tensor is given by
U
=
∑
i
=
1
3
λ
i
N
i
⊗
N
i
{\displaystyle {\boldsymbol {U}}=\sum _{i=1}^{3}\lambda _{i}{\boldsymbol {N}}_{i}\otimes {\boldsymbol {N}}_{i}}
Therefore,
U
=
λ
1
N
1
N
1
T
+
λ
2
N
2
N
2
T
+
λ
3
N
3
N
3
T
.
{\displaystyle \mathbf {U} =\lambda _{1}~\mathbf {N} _{1}~\mathbf {N} _{1}^{T}+\lambda _{2}~\mathbf {N} _{2}~\mathbf {N} _{2}^{T}+\lambda _{3}~\mathbf {N} _{3}~\mathbf {N} _{3}^{T}~.}
Hence the right stretch is
U
=
[
1
+
t
0
0
0
1
+
2
t
0
0
0
1
]
{\displaystyle {\mathbf {U} ={\begin{bmatrix}1+t&0&0\\0&1+2t&0\\0&0&1\end{bmatrix}}}}
At
t
=
0
,
1
,
2
{\displaystyle t=0,1,2}
, we have
U
(
0
)
=
[
1
0
0
0
1
0
0
0
1
]
;
U
(
1
)
=
[
2
0
0
0
3
0
0
0
1
]
;
U
(
2
)
=
[
3
0
0
0
5
0
0
0
1
]
.
{\displaystyle \mathbf {U} (0)={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}~;~~\mathbf {U} (1)={\begin{bmatrix}2&0&0\\0&3&0\\0&0&1\end{bmatrix}}~;~~\mathbf {U} (2)={\begin{bmatrix}3&0&0\\0&5&0\\0&0&1\end{bmatrix}}~.}
Now
R
=
F
U
−
1
{\displaystyle \mathbf {R} =\mathbf {F} ~\mathbf {U} ^{-1}}
and
U
−
1
=
[
1
1
+
t
0
0
0
1
1
+
2
t
0
0
0
1
]
{\displaystyle \mathbf {U} ^{-1}={\begin{bmatrix}{\cfrac {1}{1+t}}&0&0\\0&{\cfrac {1}{1+2t}}&0\\0&0&1\end{bmatrix}}}
Therefore, the rotation is
R
=
[
cos
π
t
2
−
sin
π
t
2
0
sin
π
t
2
cos
π
t
2
0
0
0
1
]
.
{\displaystyle {\mathbf {R} =\left[{\begin{aligned}\cos {\cfrac {\pi t}{2}}&&-\sin {\cfrac {\pi t}{2}}&&0\\\sin {\cfrac {\pi t}{2}}&&\cos {\cfrac {\pi t}{2}}&&0\\0&&0&&1\end{aligned}}\right]~.}}
At
t
=
0
,
1
,
2
{\displaystyle t=0,1,2}
, we have
R
(
0
)
=
[
1
0
0
0
1
0
0
0
1
]
;
R
(
1
)
=
[
0
−
1
0
1
0
0
0
0
1
]
;
R
(
2
)
=
[
−
1
0
0
0
−
1
0
0
0
1
]
.
{\displaystyle \mathbf {R} (0)={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}~;~~\mathbf {R} (1)={\begin{bmatrix}0&-1&0\\1&0&0\\0&0&1\end{bmatrix}}~;~~\mathbf {R} (2)={\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&1\end{bmatrix}}~.}
Part 10
Assume an isotropic, hypoelastic constitutive equation for the material of the element. Compute the material time derivative of the Cauchy stress at
t
=
1
{\displaystyle t=1}
using (a) the Jaumann rate and (b) the Truesdell rate.
A hypoelastic material behaves according to the relation
σ
△
=
C
:
d
.
{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}={\boldsymbol {\mathsf {C}}}:\mathbf {d} ~.}
For an isotropic material
C
=
λ
1
⊗
1
+
2
μ
I
{\displaystyle {\boldsymbol {\mathsf {C}}}=\lambda ~{\boldsymbol {\mathit {1}}}\otimes {\boldsymbol {\mathit {1}}}+2\mu ~{\boldsymbol {I}}}
Therefore,
σ
△
=
λ
1
⊗
1
:
d
+
2
μ
I
:
d
=
λ
tr
(
d
)
1
+
2
μ
d
{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}=\lambda ~{\boldsymbol {\mathit {1}}}\otimes {\boldsymbol {\mathit {1}}}:\mathbf {d} +2\mu ~{\boldsymbol {I}}:\mathbf {d} =\lambda ~{\text{tr}}(\mathbf {d} )~{\boldsymbol {\mathit {1}}}+2\mu ~\mathbf {d} }
Recall that
d
=
[
a
1
+
a
t
cos
2
π
t
2
+
b
1
+
b
t
sin
2
π
t
2
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
0
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
a
1
+
a
t
a
sin
2
π
t
2
+
b
1
+
b
t
cos
2
π
t
2
0
0
0
0
]
{\displaystyle \mathbf {d} =\left[{\begin{aligned}{\cfrac {a}{1+at}}~\cos ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\sin ^{2}{\cfrac {\pi t}{2}}&&\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}&&0\\\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}&&{\cfrac {a}{1+at}}~a~\sin ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\cos ^{2}{\cfrac {\pi t}{2}}&&0\\0&&0&&0\end{aligned}}\right]}
Using the values of
a
{\displaystyle a}
and
b
{\displaystyle b}
from the previous part, at
t
=
1
{\displaystyle t=1}
,
d
=
[
1
2
cos
2
π
2
+
2
3
sin
2
π
2
[
1
2
−
2
3
]
cos
π
2
sin
π
2
0
[
1
2
−
2
3
]
cos
π
2
sin
π
2
1
2
sin
2
π
2
+
2
3
cos
2
π
2
0
0
0
0
]
=
[
2
3
0
0
0
1
2
0
0
0
0
]
{\displaystyle \mathbf {d} =\left[{\begin{aligned}{\cfrac {1}{2}}~\cos ^{2}{\cfrac {\pi }{2}}+{\cfrac {2}{3}}~\sin ^{2}{\cfrac {\pi }{2}}&&\left[{\cfrac {1}{2}}-{\cfrac {2}{3}}\right]\cos {\cfrac {\pi }{2}}~\sin {\cfrac {\pi }{2}}&&0\\\left[{\cfrac {1}{2}}-{\cfrac {2}{3}}\right]\cos {\cfrac {\pi }{2}}~\sin {\cfrac {\pi }{2}}&&{\cfrac {1}{2}}~\sin ^{2}{\cfrac {\pi }{2}}+{\cfrac {2}{3}}~\cos ^{2}{\cfrac {\pi }{2}}&&0\\0&&0&&0\end{aligned}}\right]={\begin{bmatrix}{\cfrac {2}{3}}&0&0\\0&{\cfrac {1}{2}}&0\\0&0&0\end{bmatrix}}}
Therefore, the trace of the rate of defromation is
tr
(
d
)
=
7
6
{\displaystyle {\text{tr}}(\mathbf {d} )={\cfrac {7}{6}}}
Therefore,
σ
△
=
7
λ
6
[
1
0
0
0
1
0
0
0
1
]
+
2
μ
[
2
3
0
0
0
1
2
0
0
0
0
]
=
[
7
λ
6
+
4
μ
3
0
0
0
7
λ
6
+
μ
0
0
0
7
λ
6
]
{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}={\cfrac {7\lambda }{6}}~{\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}+2\mu ~{\begin{bmatrix}{\cfrac {2}{3}}&0&0\\0&{\cfrac {1}{2}}&0\\0&0&0\end{bmatrix}}={\begin{bmatrix}{\cfrac {7\lambda }{6}}+{\cfrac {4\mu }{3}}&0&0\\0&{\cfrac {7\lambda }{6}}+\mu &0\\0&0&{\cfrac {7\lambda }{6}}\end{bmatrix}}}
For the Jaumann rate
σ
△
=
σ
˙
+
σ
∙
w
−
w
∙
σ
{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}={\dot {\boldsymbol {\sigma }}}+{\boldsymbol {\sigma }}\bullet \mathbf {w} -\mathbf {w} \bullet {\boldsymbol {\sigma }}}
where the spin is
w
=
π
2
[
0
−
1
0
1
0
0
0
0
0
]
{\displaystyle \mathbf {w} ={\cfrac {\pi }{2}}\left[{\begin{aligned}0&&-1&&0\\1&&0&&0\\0&&0&&0\end{aligned}}\right]}
Therefore,
σ
˙
=
[
7
λ
6
+
4
μ
3
0
0
0
7
λ
6
+
μ
0
0
0
7
λ
6
]
−
π
2
[
σ
x
x
σ
x
y
σ
x
z
σ
x
y
σ
y
y
σ
y
z
σ
x
z
σ
y
z
σ
z
z
]
[
0
−
1
0
1
0
0
0
0
0
]
+
π
2
[
0
−
1
0
1
0
0
0
0
0
]
[
σ
x
x
σ
x
y
σ
x
z
σ
x
y
σ
y
y
σ
y
z
σ
x
z
σ
y
z
σ
z
z
]
{\displaystyle {\dot {\boldsymbol {\sigma }}}={\begin{bmatrix}{\cfrac {7\lambda }{6}}+{\cfrac {4\mu }{3}}&0&0\\0&{\cfrac {7\lambda }{6}}+\mu &0\\0&0&{\cfrac {7\lambda }{6}}\end{bmatrix}}-{\cfrac {\pi }{2}}{\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{xy}&\sigma _{yy}&\sigma _{yz}\\\sigma _{xz}&\sigma _{yz}&\sigma _{zz}\end{bmatrix}}{\begin{bmatrix}0&&-1&&0\\1&&0&&0\\0&&0&&0\end{bmatrix}}+{\cfrac {\pi }{2}}{\begin{bmatrix}0&&-1&&0\\1&&0&&0\\0&&0&&0\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{xy}&\sigma _{yy}&\sigma _{yz}\\\sigma _{xz}&\sigma _{yz}&\sigma _{zz}\end{bmatrix}}}
or,
σ
˙
=
[
7
λ
6
+
4
μ
3
0
0
0
7
λ
6
+
μ
0
0
0
7
λ
6
]
+
π
2
[
−
σ
x
y
σ
x
x
−
σ
y
y
−
σ
y
z
σ
x
x
−
σ
y
y
2
σ
x
y
σ
x
z
−
σ
y
z
σ
x
z
0
]
{\displaystyle {{\dot {\boldsymbol {\sigma }}}={\begin{bmatrix}{\cfrac {7\lambda }{6}}+{\cfrac {4\mu }{3}}&0&0\\0&{\cfrac {7\lambda }{6}}+\mu &0\\0&0&{\cfrac {7\lambda }{6}}\end{bmatrix}}+{\cfrac {\pi }{2}}{\begin{bmatrix}-\sigma _{xy}&\sigma _{xx}-\sigma _{yy}&-\sigma _{yz}\\\sigma _{xx}-\sigma _{yy}&2\sigma _{xy}&\sigma _{xz}\\-\sigma _{yz}&\sigma _{xz}&0\end{bmatrix}}}}
For the Truesdell rate
σ
△
=
σ
∘
=
σ
˙
−
σ
∙
l
T
−
l
∙
σ
+
tr
(
l
)
σ
.
{\displaystyle {\overset {\triangle }{\boldsymbol {\sigma }}}={\overset {\circ }{\boldsymbol {\sigma }}}={\dot {\boldsymbol {\sigma }}}-{\boldsymbol {\sigma }}\bullet \mathbf {l} ^{T}-\mathbf {l} \bullet {\boldsymbol {\sigma }}+{\text{tr}}(\mathbf {l} ){\boldsymbol {\sigma }}~.}
Therefore,
σ
˙
=
σ
∘
+
σ
∙
l
T
+
l
∙
σ
−
tr
(
l
)
σ
.
{\displaystyle {\dot {\boldsymbol {\sigma }}}={\overset {\circ }{\boldsymbol {\sigma }}}+{\boldsymbol {\sigma }}\bullet \mathbf {l} ^{T}+\mathbf {l} \bullet {\boldsymbol {\sigma }}-{\text{tr}}(\mathbf {l} ){\boldsymbol {\sigma }}~.}
Recall,
l
=
[
a
1
+
a
t
cos
2
π
t
2
+
b
1
+
b
t
sin
2
π
t
2
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
−
π
2
0
[
a
1
+
a
t
−
b
1
+
b
t
]
cos
π
t
2
sin
π
t
2
+
π
2
a
1
+
a
t
sin
2
π
t
2
+
b
1
+
b
t
cos
2
π
t
2
0
0
0
0
]
{\displaystyle \mathbf {l} =\left[{\begin{aligned}{\cfrac {a}{1+at}}~\cos ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\sin ^{2}{\cfrac {\pi t}{2}}&&\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}-{\frac {\pi }{2}}&&0\\\left[{\cfrac {a}{1+at}}-{\cfrac {b}{1+bt}}\right]\cos {\cfrac {\pi t}{2}}~\sin {\cfrac {\pi t}{2}}+{\cfrac {\pi }{2}}&&{\cfrac {a}{1+at}}~\sin ^{2}{\cfrac {\pi t}{2}}+{\cfrac {b}{1+bt}}~\cos ^{2}{\cfrac {\pi t}{2}}&&0\\0&&0&&0\end{aligned}}\right]}
For
a
=
1
{\displaystyle a=1}
,
b
=
2
{\displaystyle b=2}
,
t
=
1
{\displaystyle t=1}
, we have
l
=
[
1
2
cos
2
π
2
+
2
3
sin
2
π
2
[
1
2
−
2
3
]
cos
π
2
sin
π
2
−
π
2
0
[
1
2
−
2
3
]
cos
π
2
sin
π
2
+
π
2
1
2
sin
2
π
2
+
2
3
cos
2
π
2
0
0
0
0
]
=
[
2
3
−
π
2
0
π
2
1
2
0
0
0
0
]
.
{\displaystyle \mathbf {l} =\left[{\begin{aligned}{\cfrac {1}{2}}~\cos ^{2}{\cfrac {\pi }{2}}+{\cfrac {2}{3}}~\sin ^{2}{\cfrac {\pi }{2}}&&\left[{\cfrac {1}{2}}-{\cfrac {2}{3}}\right]\cos {\cfrac {\pi }{2}}~\sin {\cfrac {\pi }{2}}-{\frac {\pi }{2}}&&0\\\left[{\cfrac {1}{2}}-{\cfrac {2}{3}}\right]\cos {\cfrac {\pi }{2}}~\sin {\cfrac {\pi }{2}}+{\cfrac {\pi }{2}}&&{\cfrac {1}{2}}~\sin ^{2}{\cfrac {\pi }{2}}+{\cfrac {2}{3}}~\cos ^{2}{\cfrac {\pi }{2}}&&0\\0&&0&&0\end{aligned}}\right]={\begin{bmatrix}{\cfrac {2}{3}}&-{\cfrac {\pi }{2}}&0\\{\cfrac {\pi }{2}}&{\cfrac {1}{2}}&0\\0&0&0\end{bmatrix}}~.}
Therefore,
tr
(
l
)
=
7
6
=
tr
(
d
)
{\displaystyle {\text{tr}}(\mathbf {l} )={\cfrac {7}{6}}={\text{tr}}(\mathbf {d} )}
and
σ
˙
=
[
7
λ
6
+
4
μ
3
0
0
0
7
λ
6
+
μ
0
0
0
7
λ
6
]
+
[
σ
x
x
σ
x
y
σ
x
z
σ
x
y
σ
y
y
σ
y
z
σ
x
z
σ
y
z
σ
z
z
]
[
2
3
π
2
0
−
π
2
1
2
0
0
0
0
]
+
[
2
3
−
π
2
0
π
2
1
2
0
0
0
0
]
[
σ
x
x
σ
x
y
σ
x
z
σ
x
y
σ
y
y
σ
y
z
σ
x
z
σ
y
z
σ
z
z
]
−
7
6
[
σ
x
x
σ
x
y
σ
x
z
σ
x
y
σ
y
y
σ
y
z
σ
x
z
σ
y
z
σ
z
z
]
{\displaystyle {\dot {\boldsymbol {\sigma }}}={\begin{bmatrix}{\cfrac {7\lambda }{6}}+{\cfrac {4\mu }{3}}&0&0\\0&{\cfrac {7\lambda }{6}}+\mu &0\\0&0&{\cfrac {7\lambda }{6}}\end{bmatrix}}+{\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{xy}&\sigma _{yy}&\sigma _{yz}\\\sigma _{xz}&\sigma _{yz}&\sigma _{zz}\end{bmatrix}}{\begin{bmatrix}{\cfrac {2}{3}}&{\cfrac {\pi }{2}}&0\\-{\cfrac {\pi }{2}}&{\cfrac {1}{2}}&0\\0&0&0\end{bmatrix}}+{\begin{bmatrix}{\cfrac {2}{3}}&-{\cfrac {\pi }{2}}&0\\{\cfrac {\pi }{2}}&{\cfrac {1}{2}}&0\\0&0&0\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{xy}&\sigma _{yy}&\sigma _{yz}\\\sigma _{xz}&\sigma _{yz}&\sigma _{zz}\end{bmatrix}}-{\cfrac {7}{6}}{\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{xy}&\sigma _{yy}&\sigma _{yz}\\\sigma _{xz}&\sigma _{yz}&\sigma _{zz}\end{bmatrix}}}
Hence,
σ
˙
=
[
7
λ
6
+
4
μ
3
0
0
0
7
λ
6
+
μ
0
0
0
7
λ
6
]
+
[
1
6
σ
x
x
+
π
σ
x
y
π
2
(
−
σ
x
x
+
σ
y
y
)
1
2
(
−
σ
x
z
+
π
σ
y
z
)
π
2
(
−
σ
x
x
+
σ
y
y
)
−
1
6
σ
y
y
−
π
σ
x
y
−
2
3
σ
y
z
−
π
2
σ
x
z
1
2
(
−
σ
x
z
+
π
σ
y
z
)
−
2
3
σ
y
z
−
π
2
σ
x
z
−
7
6
σ
z
z
]
{\displaystyle {{\dot {\boldsymbol {\sigma }}}={\begin{bmatrix}{\cfrac {7\lambda }{6}}+{\cfrac {4\mu }{3}}&0&0\\0&{\cfrac {7\lambda }{6}}+\mu &0\\0&0&{\cfrac {7\lambda }{6}}\end{bmatrix}}+{\begin{bmatrix}{\cfrac {1}{6}}\sigma _{xx}+\pi \sigma _{xy}&{\cfrac {\pi }{2}}(-\sigma _{xx}+\sigma _{yy})&{\cfrac {1}{2}}(-\sigma _{xz}+\pi \sigma _{yz})\\{\cfrac {\pi }{2}}(-\sigma _{xx}+\sigma _{yy})&-{\cfrac {1}{6}}\sigma _{yy}-\pi \sigma _{xy}&-{\cfrac {2}{3}}\sigma _{yz}-{\cfrac {\pi }{2}}\sigma _{xz}\\{\cfrac {1}{2}}(-\sigma _{xz}+\pi \sigma _{yz})&-{\cfrac {2}{3}}\sigma _{yz}-{\cfrac {\pi }{2}}\sigma _{xz}&-{\cfrac {7}{6}}\sigma _{zz}\end{bmatrix}}}}