Let v ∈ V {\displaystyle {}v\in V} . Then, the containment v ∈ V i + 1 = kern  φ i + 1 {\displaystyle {}v\in V_{i+1}=\operatorname {kern} \varphi ^{i+1}} is equivalent to φ ( v ) ∈ V i = kern  φ i {\displaystyle {}\varphi (v)\in V_{i}=\operatorname {kern} \varphi ^{i}} . This gives the first claim. For the second claim, assume that
holds for some i < s {\displaystyle {}i<s} . By applying φ − 1 {\displaystyle {}\varphi ^{-1}} , we get
In this way, we obtain
contradicting the minimality of s {\displaystyle {}s} .