Matrix/Multiplication/K/Continuity/Exercise
< Matrix < Multiplication < K < Continuity
Show that the
matrix multiplication
Mat
m
×
n
(
K
)
×
Mat
n
×
p
(
K
)
⟶
Mat
m
×
p
(
K
)
,
(
A
,
B
)
⟼
A
∘
B
,
{\displaystyle \operatorname {Mat} _{m\times n}({\mathbb {K} })\times \operatorname {Mat} _{n\times p}({\mathbb {K} })\longrightarrow \operatorname {Mat} _{m\times p}({\mathbb {K} }),(A,B)\longmapsto A\circ B,}
is
continuous
.
Create a solution