Matrix/2x2/Shearing matrices/Eigenvalues and diagonalizable/Example
              < Matrix < 2x2 < Shearing matrices < Eigenvalues and diagonalizable 
 
            
          We consider -shearing matrices
with . The condition for some to be an eigenvalue means
This yields the equations
For , we get and hence also , that is, only can be an eigenvalue. In this case, the second equation is fulfilled, and the first equation becomes
For , we get and thus is the eigenspace for the eigenvalue , and is an eigenvector which spans this eigenspace. For , we have the identity matrix, and the eigenspace for the eigenvalue is the total plane. For , there is a one-dimensional eigenspace, and the mapping is not diagonalizable.