Let K {\displaystyle {}K} be a field, and let V 1 , … , V n , W 1 , … , W n {\displaystyle {}V_{1},\ldots ,V_{n},W_{1},\ldots ,W_{n}} denote vector spaces over K {\displaystyle {}K} . For K {\displaystyle {}K} -linear mappings
the linear mapping
is called the tensor product of the φ i {\displaystyle {}\varphi _{i}} . It is denoted by φ 1 ⊗ ⋯ ⊗ φ n {\displaystyle {}\varphi _{1}\otimes _{}\cdots \otimes _{}\varphi _{n}} .