
1 Young Won Lim
9/1/22

Lambda Calculus -  Informal description (1A)



2 Young Won Lim
9/1/22

 Copyright (c)  2022  - 2016 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Lambda Calculus (1A) - 
Informal description

3 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

4 Young Won Lim
9/1/22

The central concept in the lambda calculus is 

an expression which we can think of as a program 

that returns a result  when evaluated 

consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:

expr → λ variable . expr | expr expr | variable | ( expr ) | constant

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

CFG for Lambda Calculus (1) 



Lambda Calculus (1A) - 
Informal description

5 Young Won Lim
9/1/22

expr → λ variable . expr | expr expr | variable | ( expr ) | constant

A variable is an identifier.

A constant is a built-in function such as addition or multiplication, 

or a constant such as an integer or boolean. 

all programming language constructs 

can be represented as functions 

with the pure lambda calculus 

so these constants are unnecessary. 

However, some constants may be used for notational simplicity.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

CFG for Lambda Calculus (2) 



Lambda Calculus (1A) - 
Informal description

6 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

7 Young Won Lim
9/1/22

A function abstraction, often called a lambda abstraction, 

is a lambda expression that defines a function.

A function abstraction consists of four parts: 

a lambda followed by a variable, a period, 

and then an expression as in λx.expr.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (1)



Lambda Calculus (1A) - 
Informal description

8 Young Won Lim
9/1/22

For example, the function abstraction λx. + x 1 

defines a function of x that adds x to 1. 

Parentheses can be added to lambda expressions for clarity. 

Thus, we could have written this function abstraction 

as λx.(+ x 1) or even as (λx. (+ x 1)).

In C this function definition might be written as

        int addOne (int x) {

          return (x + 1);     }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (2)



Lambda Calculus (1A) - 
Informal description

9 Young Won Lim
9/1/22

Note that unlike C 

the lambda abstraction does not give a name to the function. 

The lambda expression itself is the function.

We say that λx.expr binds the variable x in expr and 

that expr is the scope of the variable.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (3)



Lambda Calculus (1A) - 
Informal description

10 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

11 Young Won Lim
9/1/22

A function application, often called a lambda application, 

consists of an expression followed by an expression: 

expr1 expr2. 

The first expression expr1 is 

a function abstraction 

the second expression expr2 is 

the argument to which the function is applied. 

All functions in lambda calculus have exactly one argument. 

Multiple-argument functions are represented by currying, 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (1)

Function
Abstraction 

Expr1

Argument

Expr2

Function
Application 



Lambda Calculus (1A) - 
Informal description

12 Young Won Lim
9/1/22

the lambda expression λx. (+ x 1) 2 

is an application of the function λx. (+ x 1) to the argument 2.

This function application λx. (+ x 1) 2  can be evaluated 

by substituting the argument 2 for the formal parameter x 

in the body (+ x 1). 

Doing this we get (+ 2 1). 

This substitution is called a beta reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (2)

λx. (+ x 1)    2 

 (+ 2 1)

Function
Abstraction 

Expr1

Argument

Expr2



Lambda Calculus (1A) - 
Informal description

13 Young Won Lim
9/1/22

Beta reductions are like macro substitutions in C. 

To do beta reductions correctly, we may need 

to rename bound variables in lambda expressions 

to avoid name clashes.

function application associates left-to-right; thus, 

f g h = (f g) h

function application binds more tightly than λ; thus, 

λx. f g x = (λx. (f g) x).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (3)



Lambda Calculus (1A) - 
Informal description

14 Young Won Lim
9/1/22

Functions in the lambda calculus are first-class citizens; 

functions can be used as arguments to functions 

functions can return functions as results.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (4)



Lambda Calculus (1A) - 
Informal description

15 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

16 Young Won Lim
9/1/22

In the function definition λx.x 

the variable x in the body of the definition (the second x) 

is bound because its first occurrence in the definition is λx.

A variable that is not bound in expr 

is said to be free in expr. 

In the function (λx.xy), 

in the body of the function 

the variable x is bound 

the variable y is free.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Free and bound variables (1)

λx. x    

The body of
the definition

bounded 
variable x

λx. xy    

The body of
the definition

bounded 
variable x

free
variable x



Lambda Calculus (1A) - 
Informal description

17 Young Won Lim
9/1/22

Every variable in a lambda expression is 

either bound or free.

 

Bound and free variables have 

quite a different status in functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Free and bound variables (2)



Lambda Calculus (1A) - 
Informal description

18 Young Won Lim
9/1/22

In the expression (λx.x)(λy.yx):

in the body of the leftmost expression

the variable x  is bound to the first lambda.

in the body of the second expression

the variable y  is bound to the second lambda.

the variable x is free

independent of the x in the first expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Free and bound variables (3)

(λx. x) (λy. yx)    

The first
lambda

variable x
bounded 
to the 1st

labmda

The second
lambda

variable y
bounded 
to the 2nd 
labmda

variable x
free



Lambda Calculus (1A) - 
Informal description

19 Young Won Lim
9/1/22

In the expression (λx.xy)(λy.y):

 

in the body of the leftmost expression 

the variable y is free.

in the body of the second expression 

the variable y is bound to the second lambda.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Free and bound variables (4)

(λx. xy) (λy. y)    

The first
lambda

variable x
bounded 
to the 1st

labmda

The second
lambda

variable y
bounded 
to the 2nd 
labmda

variable y
free



Lambda Calculus (1A) - 
Informal description

20 Young Won Lim
9/1/22

Given an expression e, the following rules define FV(e), 

the set of free variables in e:

If e is a variable x, then FV(e) = {x}.

If e is of the form λx.y, then FV(e) = FV(y) - {x}.

If e is of the form xy, then FV(e) = FV(x)  ∪ FV(y).

An expression with no free variables is said to be closed.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Free and bound variables (5)



Lambda Calculus (1A) - 
Informal description

21 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

22 Young Won Lim
9/1/22

All functions in the lambda calculus are 

prefix and 

take exactly one argument.

If we want to apply a function to more than one argument, 

we can use a technique called currying 

that treats a function applied to more than one argument 

to a sequence of applications of one-argument functions. 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Currying (1)



Lambda Calculus (1A) - 
Informal description

23 Young Won Lim
9/1/22

For example, to express the sum of 1 and 2 

we can write (+ 1 2) as ((+ 1) 2) 

the expression (+ 1) denotes the function 

that adds 1 to its argument. 

Thus ((+ 1) 2) means 

the function + is applied to the argument 1 

the result is a function (+ 1) that adds 1 to its argument: 

(+ 1 2) = ((+ 1) 2) → 3

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Currying (2)



Lambda Calculus (1A) - 
Informal description

24 Young Won Lim
9/1/22

In lambda calculus, each input is preceded by a λ symbol. 

A function can have more than one input. 

Currying a function of two inputs transforms that function 

into a function with one input 

by passing one of the inputs into it. 

currying turns f(x,y) to g(y) 

g is f with x passed into it. 

g only takes one input, y. 

f(x,y) = x + y if x = 3 then f(3,y) = 3 + y  … g(y)

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539

Currying (3)



Lambda Calculus (1A) - 
Informal description

25 Young Won Lim
9/1/22

Similarly in lambda calculus:

λx.λy.(x+y) 3 y

= (λx.(λy.(x+y)) 3) y

= (λy.(3+y)) y

= λy.(3+y) y

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539

Currying (4)



Lambda Calculus (1A) - 
Informal description

26 Young Won Lim
9/1/22

One can curry recursively, and turn a function of any number of input 

to a function of that number of input minus one. 

(λx.λy.λz.(x+y+z) 3) 4 5

= (λy.λz.(3+y+z)) 4 5

= (λz.(3+4+z)) 5

= (3+4+5)

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539

Currying (5)



Lambda Calculus (1A) - 
Informal description

27 Young Won Lim
9/1/22

a function g with multiple arguments, eg) g 3 4 

this allows us to define a multi-argument function 

as a function that returns a function: 

define g as λx.λy.(x² + y²)½ 

This says that g takes a parameter x and returns a function 

that takes a parameter y and returns (x² + y²)½. 

g 3 4  ⇒ (λx.λy.(x² + y²)½) 3 4

 ⇒ (λy.(3² + y²)½) 4

 ⇒ (3² + 4²)½ = 5

http://www.cburch.com/books/lambda/

Currying (6)



Lambda Calculus (1A) - 
Informal description

28 Young Won Lim
9/1/22

g 1 is the function 

that takes a parameter y and returns (1 + y²)½. 

define h to be g 1, 

which would refer to the function λy.(1 + y²)½.

The lambda calculus is particularly useful 

when we want to talk about functions 

whose parameters are functions or which return functions. 

http://www.cburch.com/books/lambda/

Currying (7)



Lambda Calculus (1A) - 
Informal description

29 Young Won Lim
9/1/22

For example, suppose we define s according to the following:

s = λh.λz.h (h z).

Here, s takes a function f as a parameter and 

returns the function that returns the result of 

applying f twice to its argument. 

Thus, if f is λx.x + 1, then we can try 

to determine what function s f represents:

http://www.cburch.com/books/lambda/

Currying (8)



Lambda Calculus (1A) - 
Informal description

30 Young Won Lim
9/1/22

s f  ⇒ (λh.λz.h (h z)) (λx.x + 1)

 ⇒ λz.(λx.x + 1) ((λx.x + 1) z)

 ⇒ λz.(λx.x + 1) ((λx.x + 1) z)

 ⇒ λz.(λx.x + 1) (z + 1)

 ⇒ λz.((λx.x + 1) (z + 1))

 ⇒ λz.(z + 1) + 1

 ⇒ λz.z + 2

Thus, s f is a function that returns two more than its argument.

http://www.cburch.com/books/lambda/

Currying (8)



Lambda Calculus (1A) - 
Informal description

31 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

32 Young Won Lim
9/1/22

The name of a formal parameter 

in a function definition is arbitrary. 

We can use any variable to name a parameter, 

so that the function λx.x is equivalent to λy.y and λz.z. 

This kind of renaming is called alpha reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Alpha reduction (1)



Lambda Calculus (1A) - 
Informal description

33 Young Won Lim
9/1/22

Note that we cannot rename 

free variables in expressions.

Also note that we cannot change 

the name of a bound variable in an expression 

to conflict with the name of a free variable in that expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Alpha reduction (2)



Lambda Calculus (1A) - 
Informal description

34 Young Won Lim
9/1/22

formal parameters are only names: 

they are correct if they are consistent.

(λx . (λx . + (− x 1)) x 3) 9 

↔ (λx . (λy . + (− y 1)) x 3) 9

→ ((λy . + (− y 1)) 9 3)

→ (((λy . + (− y 1)) 9) 3)

→ (+ (− 9 1) 3)

→ (+ 8 3)

→ 11

http://www.cs.columbia.edu/~aho/cs4115/Lectures/2014_EdwardsLC.pdf

Alpha reduction (3)



Lambda Calculus (1A) - 
Informal description

35 Young Won Lim
9/1/22

You’ve probably done this before in C or Java:

int add(int x, int y)

{

return x + y;

}

http://www.cs.columbia.edu/~aho/cs4115/Lectures/2014_EdwardsLC.pdf

Alpha reduction (4)

int add(int a, int b)

{

return a + b;

}



Lambda Calculus (1A) - 
Informal description

36 Young Won Lim
9/1/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html



Lambda Calculus (1A) - 
Informal description

37 Young Won Lim
9/1/22

For a beta reduction, we introduced the notation [f/x]e 

to indicate that the expression f is to be substituted 

for all free occurrences of the formal parameter x in the expression e:

    (λx.e) f → [f/x]e

f for x in e

f  expression  

x  formal parameter 

e  expression 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (1)



Lambda Calculus (1A) - 
Informal description

38 Young Won Lim
9/1/22

To avoid name clashes in a substitution [f/x]e, 

first rename the bound variables in e and f 

so they become distinct. 

Then perform the textual substituion of f for x in e.

For example, consider the substitution [y(λx.x)/x] λy.(λx.x)yx.

    After renaming all the bound variables 

to make them all distinct we get [y(λu.u)/x] λv.(λw.w)vx.

    Then doing the substitution we get λv.(λw.w)v(y(λu.u)).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (2)

In the first expression

x → u

In the second expression 

y → v

x → w



Lambda Calculus (1A) - 
Informal description

39 Young Won Lim
9/1/22

The rules for substitution are as follows. 

assume x and y are distinct variables, and e, f and g are expressions.

    Substitution rules for variables

       [e/x]x = e

       [e/x]y = y

    Substitution rules for function applications

       [e/x](f g) = ([e/x]f) ([e/x]g)

    Substitution rules for function abstractions

       [e/x](λx.f) = λx.f

       [e/x](λy.f) = λy.[e/x]f 

provided y is not free in e (this is called the "freshness" condition).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (3)

f for x in e

f  expression  

x  formal parameter 

e  expression 

λx.e f     [f/x]e



Lambda Calculus (1A) - 
Informal description

40 Young Won Lim
9/1/22

assume x and y are distinct variables

    For variables

       [e/x]x = e x ← e 

       [e/x]y = y y is a variable 

cannot contain x

no substitution

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (3’)

e for x in f

e  expression  

x  formal parameter 

f  expression 

λx.e f     [f/x]e



Lambda Calculus (1A) - 
Informal description

41 Young Won Lim
9/1/22

assume e, f and g are expressions.

    For function applications

       [e/x](f g) = ([e/x]f) ([e/x]g)

f and g are expressions

      can contain the formal parameter e 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (3’)

λx.e f     [f/x]e

[e/x](f g) 

([e/x]f) ([e/x]g) 

distribution of the substitution

over the expressions f and g

e for x in f 



Lambda Calculus (1A) - 
Informal description

42 Young Won Lim
9/1/22

assume x and y are distinct variables, and e, f and g are expressions.

    Substitution rules for function abstractions

       [e/x](λx.f) = λx.f

x in the expression f is a formal parameter (bounded)

can be renamed by an alpha reduction

then the expression f does not have x for a substitution

       [e/x](λy.f) = λy.[e/x]f 

provided y is not free in e (this is called the "freshness" condition).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (3’’)

λx.e f     [f/x]e
e for x in f 

[e/x](λx.f) 

(λx.f) 



Lambda Calculus (1A) - 
Informal description

43 Young Won Lim
9/1/22

assume x and y are distinct variables, and e, f and g are expressions.

    Substitution rules for function abstractions

       [e/x](λx.f) = λx.f

       [e/x](λy.f) = λy.[e/x]f 

provided y is not free in e (this is called the "freshness" condition).

the expression f may contain variable x 

the expression e may contain variable y

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (3’’)

λx.e f     [f/x]e
e for x in f 

[e/x](λx.f) 

[e/x](λy.f) 

(λy.[e/x]f) 



Lambda Calculus (1A) - 
Informal description

44 Young Won Lim
9/1/22

Examples:

    [y/y](λx.x) = λx.x

    [y/x]((λx.y) x) 

= ([y/x](λx.y)) ([y/x]x) 

= (λx.y)y

    Note that the freshness condition does not allow us 

to make the substitution [y/x](λy.x) = λy.([y/x]x) = λy.y 

because y is free in the expression y.

(λy.x) [y/x]

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Substitution (4)

Substitution rules 

for function abstractions

       [e/x](λx.f) = λx.f

       [e/x](λy.f) = λy.[e/x]f 

provided y is not free in e 

"freshness" condition).

the expression f 

may contain variable x 

the expression e 

may contain variable y



Lambda Calculus (1A) - 
Informal description

45 Young Won Lim
9/1/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

