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CFG for Lambda Calculus (1)

The central concept in the lambda calculus is
an expression which we can think of as a program

that returns a result when evaluated

consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:

expr — A variable . expr | expr expr | variable | ( expr) | constant

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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CFG for Lambda Calculus (2)

expr — A variable . expr | expr expr | variable | ( expr) | constant

A variable is an identifier.
A constant is a built-in function such as addition or multiplication,

or a constant such as an integer or boolean.

all programming language constructs
can be represented as functions
with the pure lambda calculus

so these constants are unnecessary.

However, some constants may be used for notational simplicity.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Abstraction (1)

A function abstraction, often called a lambda abstraction,

is a lambda expression that defines a function.

A function abstraction consists of four parts:
a lambda followed by a variable, a period,

and then an expression as in Ax.expr.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Abstraction (2)

For example, the function abstraction Ax. + x 1
defines a function of x that adds x to 1.

Parentheses can be added to lambda expressions for clarity.
Thus, we could have written this function abstraction

as Ax.(+ x 1) or even as (Ax. (+ x 1)).

In C this function definition might be written as
int addOne (int x) {
return (x +1); }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Abstraction (3)

Note that unlike C
the lambda abstraction does not give a name to the function.

The lambda expression itself is the function.

We say that Ax.expr binds the variable x in expr and

that expr is the scope of the variable.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Application (1)

A function application, often called a lambda application, Function
Application
consists of an expression followed by an expression: '/-\
exprl expr2.
Exprl Expr2
Function Argument
The first expression exprl is Abstraction

a function abstraction
the second expression expr2 is

the argument to which the function is applied.

All functions in lambda calculus have exactly one argument.
Multiple-argument functions are represented by currying,

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Application (2)

the lambda expression Ax. (+ x 1) 2

is an application of the function Ax. (+ x 1) to the argument 2.
This function application Ax. (+ x 1) 2 can be evaluated

by substituting the argument 2 for the formal parameter x

in the body (+ x 1).

Doing this we get (+ 2 1).

This substitution is called a beta reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Application (3)

Beta reductions are like macro substitutions in C.

To do beta reductions correctly, we may need
to rename bound variables in lambda expressions

to avoid name clashes.

function application associates left-to-right; thus,
fgh=(fg)h

function application binds more tightly than A; thus,
Ax. f g x = (Ax. (f g) x).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Function Application (4)

Functions in the lambda calculus are first-class citizens;

functions can be used as arguments to functions

functions can return functions as results.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Free and bound variables (1)

In the function definition AX.x

A variable that is not bound in expr

is said to be free in expr.

In the function (AX.xy),
in the body of the function
the variable x is bound
the variable y is free.

the variable x in the body of the definition (the second x)

is bound because its first occurrence in the definition is AX.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Free and bound variables (2)

Every variable in a lambda expression is
either bound or free.

Bound and free variables have
guite a different status in functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Free and bound variables (3)

In the expression (AX.x)(Ay.yx):

in the body of the leftmost expression

the variable x is bound to the first lambda.

in the body of the second expression

the variable y is bound to the second lambda.

the variable x is free

independent of the x in the first expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Free and bound variables (4)

: . The first The second
In the expression (AX.xy)(Ay.y): lambda lambda
. . (AX. xy) (Ay. y)
in the body of the leftmost expression u u
the variable y is free. variable x variable y
bounded bounded
to the 1° to the 2™
in the body of the second expression labmda labmda
the variable y is bound to the second lambda. variable y
free
http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Free and bound variables (5)

Given an expression e, the following rules define FV(e),
the set of free variables in e:

If e is a variable x, then FV(e) = {x}.

If e is of the form Ax.y, then FV(e) = FV(y) - {x}.

If e is of the form xy, then FV(e) = FV(x) U FV(y).

An expression with no free variables is said to be closed.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Currying (1)

All functions in the lambda calculus are
prefix and

take exactly one argument.

If we want to apply a function to more than one argument,
we can use a technique called currying
that treats a function applied to more than one argument
to a sequence of applications of one-argument functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Currying (2)

For example, to express the sum of 1 and 2
we can write (+ 1 2) as ((+ 1) 2)
the expression (+ 1) denotes the function
that adds 1 to its argument.
Thus ((+ 1) 2) means
the function + is applied to the argument 1
the result is a function (+ 1) that adds 1 to its argument:

+12)=(+1)2) -3

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Currying (3)

In lambda calculus, each input is preceded by a A symbol.

A function can have more than one input.

Currying a function of two inputs transforms that function
into a function with one input

by passing one of the inputs into it.

currying turns f(x,y) to g(y)
g is f with x passed into it.

g only takes one input, y.

f(x,y)=x+yifx=3thenf(3,y)=3+y ... g(y)

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539
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Currying (4)

Similarly in lambda calculus:
AXAy.(x+y) 3y
= (Ax.(Ay.(x+y)) 3) y
= (Ay.(3ty)) y
=Ay.(3+y) y

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539
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Currying (5)

One can curry recursively, and turn a function of any number of input

to a function of that number of input minus one.

(AX.Ay.Az.(x+y+z) 3) 4 5
= (Ay.Az.(3+y+2)) 4 5
= (Az.(3+4+z)) 5
= (3+4+5)

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539
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Currying (6)

a function g with multiple arguments, eg) g 3 4
this allows us to define a multi-argqument function

as a function that returns a function:

define g as Ax.Ay.(x2 + y?)%
This says that g takes a parameter x and returns a function

that takes a parameter y and returns (x* + y?)%.

g34=>  (AX.Ay.(x2+y?)%)34
= (Ay.(32+y?)%) 4
= (32+4)%=5

http://www.cburch.com/books/lambda/
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Currying (7)

g 1 is the function

that takes a parameter y and returns (1 + y?)%.
define hto be g 1,

which would refer to the function Ay.(1 + y?)%.

The lambda calculus is particularly useful
when we want to talk about functions

whose parameters are functions or which return functions.

http://www.cburch.com/books/lambda/
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Currying (8)

For example, suppose we define s according to the following:
s = Ah.Az.h (h z2).

Here, s takes a function f as a parameter and
returns the function that returns the result of

applying f twice to its argument.

Thus, if fis Ax.x + 1, then we can try

to determine what function s f represents:

http://www.cburch.com/books/lambda/
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Currying (8)

(Ah.Az.h (h 2)) AXX+1)

Az.(AX.x + 1) ((Ax.x + 1) 2)
Az.(Ax.x + 1) ((Ax.x + 1) 2)
Az.(Ax.x+1)(z+1)
Az.(Ax.x+1) (z + 1))
Az(z+1)+1

Az.z +2

sf

L R e e

Thus, s fis a function that returns two more than its argument.

http://www.cburch.com/books/lambda/
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Alpha reduction (1)

The name of a formal parameter

in a function definition is arbitrary.

We can use any variable to name a parameter,

so that the function Ax.x is equivalent to Ay.y and Az.z.

This kind of renaming is called alpha reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Alpha reduction (2)

Note that we cannot rename

free variables in expressions.

Also note that we cannot change
the name of a bound variable in an expression

to conflict with the name of a free variable in that expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Alpha reduction (3)

formal parameters are only names:

they are correct if they are consistent.

(Ax.(Ax.+(-x1))x3)9
o AMAX.(Ay.+(-y1)x3)9
- (Ay.+(-y1)93)
- ((Ay . +(-y 1) 9)3)
> (+(-91)3)
-~ (+83)
- 11

http://www.cs.columbia.edu/~aho/cs4115/Lectures/2014 EdwardsLC.pdf
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Alpha reduction (4)

You've probably done this before in C or Java:

int add(int x, int y) int add(int a, int b)
{ {

return x + y; return a + b;
} }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/2014 EdwardsLC.pdf
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Substitution (1)

For a beta reduction, we introduced the notation [fIx]e
to indicate that the expression f is to be substituted

for all free occurrences of the formal parameter x in the expression e:

(Ax.e) f - [fIx]e

fforxine

f expression

x formal parameter

e expression

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Substitution (2)

To avoid name clashes in a substitution [f/x]e, In the first expression
first rename the bound variables in e and f X > U

so they become distinct.

Then perform the textual substituion of f for x in e. In the second expression
y-vVv
For example, consider the substitution [y(Ax.x)Ix] Ay.(AX.X)yX. X > W

After renaming all the bound variables

to make them all distinct we get [y(Au.u)/x] Av.(Aw.w)vx.

Then doing the substitution we get Av.(Aw.w)v(y(Au.u)).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Substitution (3)

The rules for substitution are as follows.
Ax.e f [fix]e

assume x and y are distinct variables, and e, f and g are expressions.

Substitution rules for variables
[e/x]x=e fforxine
[e/xly =y

Substitution rules for function applications
[e/x](f g) = ([e/x]f) ([e/x]g)

Substitution rules for function abstractions
[e/x](Ax.f) = AX.f
[e/x](Ay.f) = Ay.[elx]f

provided y is not free in e (this is called the "freshness" condition).

f expression
x formal parameter

e expression

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Substitution (37)

assume x and y are distinct variables

A)@ [f/x]e

For variables

[elX]x=e X — € f s

e for xin

[elxX]ly =y y is a variable
cannot contain x

o e expression
no substitution

x formal parameter

f expression

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 40 Young Won Lim
Informal description 9/1/22



Substitution (3’)

assume e, f and g are expressions.

For function applications

[e/x](f g) = ([e/x]f) ([e/x]g)

f and g are expressions

can contain the formal parameter e

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Substitution (3")

assume x and y are distinct variables, and e, f and g are expressions.

Substitution rules for function abstractions
[e/x](Ax.f) = Ax.f

x in the expression f is a formal parameter (bounded)
can be renamed by an alpha reduction

then the expression f does not have x for a substitution

[e/x](Ay.f) = Ay.[elx]f

provided y is not free in e (this is called the "freshness" condition).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Substitution (3")

assume x and y are distinct variables, and e, f and g are expressions.

Substitution rules for function abstractions
[e/x](Ax.f) = Ax.f

[e/x](Ay.f) = Ay.[elx]f

provided y is not free in e (this is called the "freshness" condition).

the expression f may contain variable x
the expression e may contain variable y

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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Substitution (4)

Examples:

[yly](Ax.x) = AX.x

[y/X]((Ax.y) x)
= ([y/x](Ax.y)) ([y/x]x)
= (Ax.y)y

Note that the freshness condition does not allow us
to make the substitution [yIx](Ay.x) = Ay.([y/x]x) = Ay.y
because y is free in the expression y.
(Ay-x) [y/x]

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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