Lambda Calculus - Informal description (1A)

1 Young Won Lim
9/1/22

Copyright (c) 2022 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

2 Young Won Lim
9/1/22

mailto:youngwlim@hotmail.com

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 3 Young W%r}1|7i2r2
Informal description

CFG for Lambda Calculus (1)

The central concept in the lambda calculus is
an expression which we can think of as a program

that returns a result when evaluated

consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:

expr — A variable . expr | expr expr | variable | (expr) | constant

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 4 Young Won Lim
Informal description 9/1/22

CFG for Lambda Calculus (2)

expr — A variable . expr | expr expr | variable | (expr) | constant

A variable is an identifier.
A constant is a built-in function such as addition or multiplication,

or a constant such as an integer or boolean.

all programming language constructs
can be represented as functions
with the pure lambda calculus

so these constants are unnecessary.

However, some constants may be used for notational simplicity.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 5 Young Won Lim
Informal description 9/1/22

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 6 Young W%r}1|7i2r2
Informal description

Function Abstraction (1)

A function abstraction, often called a lambda abstraction,

is a lambda expression that defines a function.

A function abstraction consists of four parts:
a lambda followed by a variable, a period,

and then an expression as in Ax.expr.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 7 Young Won Lim
Informal description 9/1/22

Function Abstraction (2)

For example, the function abstraction Ax. + x 1
defines a function of x that adds x to 1.

Parentheses can be added to lambda expressions for clarity.
Thus, we could have written this function abstraction

as Ax.(+ x 1) or even as (Ax. (+ x 1)).

In C this function definition might be written as
int addOne (int x) {
return (x +1); }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

8 Young Won Lim

Lambda Calculus (1A) - 9/1/22

Informal description

Function Abstraction (3)

Note that unlike C
the lambda abstraction does not give a name to the function.

The lambda expression itself is the function.

We say that Ax.expr binds the variable x in expr and

that expr is the scope of the variable.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 9 Young Won Lim
Informal description 9/1/22

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 10 Young W%r} |7|2r2
Informal description !

Function Application (1)

A function application, often called a lambda application, Function
Application
consists of an expression followed by an expression: '/-\
exprl expr2.
Exprl Expr2
Function Argument
The first expression exprl is Abstraction

a function abstraction
the second expression expr2 is

the argument to which the function is applied.

All functions in lambda calculus have exactly one argument.
Multiple-argument functions are represented by currying,

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 11 Young Won Lim
Informal description 9/1/22

Function Application (2)

the lambda expression Ax. (+ x 1) 2

is an application of the function Ax. (+ x 1) to the argument 2.
This function application Ax. (+ x 1) 2 can be evaluated

by substituting the argument 2 for the formal parameter x

in the body (+ x 1).

Doing this we get (+ 2 1).

This substitution is called a beta reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Exprl Expr2

Function A

Abstraction rgument
AX. (+x1) 2

(+21)

Lambda Calculus (1A) - 12
Informal description

Young Won Lim
9/1/22

Function Application (3)

Beta reductions are like macro substitutions in C.

To do beta reductions correctly, we may need
to rename bound variables in lambda expressions

to avoid name clashes.

function application associates left-to-right; thus,
fgh=(fg)h

function application binds more tightly than A; thus,
Ax. f g x = (Ax. (f g) x).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 13 Young Won Lim
Informal description 9/1/22

Function Application (4)

Functions in the lambda calculus are first-class citizens;

functions can be used as arguments to functions

functions can return functions as results.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 14 Young Won Lim
Informal description 9/1/22

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 15 Young W%r}1|7i2r2
Informal description

Free and bound variables (1)

In the function definition AX.x

A variable that is not bound in expr

is said to be free in expr.

In the function (AX.xy),
in the body of the function
the variable x is bound
the variable y is free.

the variable x in the body of the definition (the second x)

is bound because its first occurrence in the definition is AX.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) -
Informal description

16

The body of
the definition

AX. X

\ A

bounded
variable x

The body of
the definition

AX. Xy
_A

bounded free
variable x variable x

Young Won Lim
9/1/22

Free and bound variables (2)

Every variable in a lambda expression is
either bound or free.

Bound and free variables have
guite a different status in functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 17 Young Won Lim
Informal description 9/1/22

Free and bound variables (3)

In the expression (AX.x)(Ay.yx):

in the body of the leftmost expression

the variable x is bound to the first lambda.

in the body of the second expression

the variable y is bound to the second lambda.

the variable x is free

independent of the x in the first expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) -
Informal description

18

The first The second
lambda lambda

(Ax. x) (Ay. yx)
A A

variable x variable y

bounded bounded variable x
to the 1° to the 2™ free
labmda labmda

Young Won Lim
9/1/22

Free and bound variables (4)

: . The first The second
In the expression (AX.xy)(Ay.y): lambda lambda
. . (AX. xy) (Ay. y)
in the body of the leftmost expression u u
the variable y is free. variable x variable y
bounded bounded
to the 1° to the 2™
in the body of the second expression labmda labmda
the variable y is bound to the second lambda. variable y
free
http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
Lambda Calculus (1A) - 19 Young Won Lim

Informal description 9/1/22

Free and bound variables (5)

Given an expression e, the following rules define FV(e),
the set of free variables in e:

If e is a variable x, then FV(e) = {x}.

If e is of the form Ax.y, then FV(e) = FV(y) - {x}.

If e is of the form xy, then FV(e) = FV(x) U FV(y).

An expression with no free variables is said to be closed.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 20 Young Won Lim
Informal description 9/1/22

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 21 Young W%r}1|7i2r2
Informal description

Currying (1)

All functions in the lambda calculus are
prefix and

take exactly one argument.

If we want to apply a function to more than one argument,
we can use a technique called currying
that treats a function applied to more than one argument
to a sequence of applications of one-argument functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 292 Young Won Lim
Informal description 9/1/22

Currying (2)

For example, to express the sum of 1 and 2
we can write (+ 1 2) as ((+ 1) 2)
the expression (+ 1) denotes the function
that adds 1 to its argument.
Thus ((+ 1) 2) means
the function + is applied to the argument 1
the result is a function (+ 1) that adds 1 to its argument:

+12)=(+1)2) -3

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 23 Young Won Lim
Informal description 9/1/22

Currying (3)

In lambda calculus, each input is preceded by a A symbol.

A function can have more than one input.

Currying a function of two inputs transforms that function
into a function with one input

by passing one of the inputs into it.

currying turns f(x,y) to g(y)
g is f with x passed into it.

g only takes one input, y.

f(x,y)=x+yifx=3thenf(3,y)=3+y ... g(y)

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539

Lambda Calculus (1A) - 24 Young Wogr/]1|7i2m2
Informal description

Currying (4)

Similarly in lambda calculus:
AXAy.(x+y) 3y
= (Ax.(Ay.(x+y)) 3) y
= (Ay.(3ty)) y
=Ay.(3+y) y

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539

Lambda Calculus (1A) - 25 Young Won Lim
Informal description 911/22

Currying (5)

One can curry recursively, and turn a function of any number of input

to a function of that number of input minus one.

(AX.Ay.Az.(x+y+z) 3) 4 5
= (Ay.Az.(3+y+2)) 4 5
= (Az.(3+4+z)) 5
= (3+4+5)

https://functional.works-hub.com/learn/higher-order-functions-lambda-calculus-currying-maps-6e539

Lambda Calculus (1A) - 26 Young Won Lim
Informal description 9/1/22

Currying (6)

a function g with multiple arguments, eg) g 3 4
this allows us to define a multi-argqument function

as a function that returns a function:

define g as Ax.Ay.(x2 + y?)%
This says that g takes a parameter x and returns a function

that takes a parameter y and returns (x* + y?)%.

g34=> (AX.Ay.(x2+y?)%)34
= (Ay.(32+y?)%) 4
= (32+4)%=5

http://www.cburch.com/books/lambda/

Lambda Calculus (1A) - 27 Young Won Lim
Informal description 9/1/22

Currying (7)

g 1 is the function

that takes a parameter y and returns (1 + y?)%.
define hto be g 1,

which would refer to the function Ay.(1 + y?)%.

The lambda calculus is particularly useful
when we want to talk about functions

whose parameters are functions or which return functions.

http://www.cburch.com/books/lambda/

Lambda Calculus (1A) - 28 Young Won Lim
Informal description 9/1/22

Currying (8)

For example, suppose we define s according to the following:
s = Ah.Az.h (h z2).

Here, s takes a function f as a parameter and
returns the function that returns the result of

applying f twice to its argument.

Thus, if fis Ax.x + 1, then we can try

to determine what function s f represents:

http://www.cburch.com/books/lambda/

Lambda Calculus (1A) - 29 Young Won Lim
Informal description 9/1/22

Currying (8)

(Ah.Az.h (h 2)) AXX+1)

Az.(AX.x + 1) ((Ax.x + 1) 2)
Az.(Ax.x + 1) ((Ax.x + 1) 2)
Az.(Ax.x+1)(z+1)
Az.(Ax.x+1) (z + 1))
Az(z+1)+1

Az.z +2

sf

L R e e

Thus, s fis a function that returns two more than its argument.

http://www.cburch.com/books/lambda/

Lambda Calculus (1A) - 30 Young Won Lim
Informal description 911/22

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 31 Young Wogr/]1|7i2r2
Informal description

Alpha reduction (1)

The name of a formal parameter

in a function definition is arbitrary.

We can use any variable to name a parameter,

so that the function Ax.x is equivalent to Ay.y and Az.z.

This kind of renaming is called alpha reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 32 Young Won Lim
Informal description 9/1/22

Alpha reduction (2)

Note that we cannot rename

free variables in expressions.

Also note that we cannot change
the name of a bound variable in an expression

to conflict with the name of a free variable in that expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 33 Young Won Lim
Informal description 9/1/22

Alpha reduction (3)

formal parameters are only names:

they are correct if they are consistent.

(Ax.(Ax.+(-x1))x3)9
o AMAX.(Ay.+(-y1)x3)9
- (Ay.+(-y1)93)
- ((Ay . +(-y 1) 9)3)
> (+(-91)3)
-~ (+83)
- 11

http://www.cs.columbia.edu/~aho/cs4115/Lectures/2014 EdwardsLC.pdf

Lambda Calculus (1A) - 34 Young Won Lim
Informal description 9/1/22

Alpha reduction (4)

You've probably done this before in C or Java:

int add(int x, int y) int add(int a, int b)
{ {

return x + y; return a + b;
} }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/2014 EdwardsLC.pdf

Lambda Calculus (1A) - 35 Young Wogr/]1|7i2m2
Informal description

* CFG for the Lambda Calculus

* Function Abstraction

* Function Application

* Free and Bound Variables

* Beta Reductions

* Evaluating a Lambda Expression

* Currying

* Renaming Bound Variables by Alpha Reduction
* Eta Conversion

* Substitutions

* Disambiguating Lambda Expressions
* Normal Form

* Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 36 Young W%r}1|7i2r2
Informal description

Substitution (1)

For a beta reduction, we introduced the notation [fIx]e
to indicate that the expression f is to be substituted

for all free occurrences of the formal parameter x in the expression e:

(Ax.e) f - [fIx]e

fforxine

f expression

x formal parameter

e expression

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 37 Young Won Lim
Informal description 9/1/22

Substitution (2)

To avoid name clashes in a substitution [f/x]e, In the first expression
first rename the bound variables in e and f X > U

so they become distinct.

Then perform the textual substituion of f for x in e. In the second expression
y-vVv
For example, consider the substitution [y(Ax.x)Ix] Ay.(AX.X)yX. X > W

After renaming all the bound variables

to make them all distinct we get [y(Au.u)/x] Av.(Aw.w)vx.

Then doing the substitution we get Av.(Aw.w)v(y(Au.u)).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 38 Young Won Lim
Informal description 9/1/22

Substitution (3)

The rules for substitution are as follows.
Ax.e f [fix]e

assume x and y are distinct variables, and e, f and g are expressions.

Substitution rules for variables
[e/x]x=e fforxine
[e/xly =y

Substitution rules for function applications
[e/x](f g) = ([e/x]f) ([e/x]g)

Substitution rules for function abstractions
[e/x](Ax.f) = AX.f
[e/x](Ay.f) = Ay.[elx]f

provided y is not free in e (this is called the "freshness" condition).

f expression
x formal parameter

e expression

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 39 Young Won Lim
Informal description 9/1/22

Substitution (37)

assume x and y are distinct variables

A)@ [f/x]e

For variables

[elX]x=e X — € f s

e for xin

[elxX]ly =y y is a variable
cannot contain x

o e expression
no substitution

x formal parameter

f expression

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 40 Young Won Lim
Informal description 9/1/22

Substitution (3’)

assume e, f and g are expressions.

For function applications

[e/x](f g) = ([e/x]f) ([e/x]g)

f and g are expressions

can contain the formal parameter e

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) -
Informal description

Ax.e f [f/x]e

m e for xin f
[e/x](f g)

([e/x]f) ([e/x]g)

distribution of the substitution

over the expressions f and g

Young Won Lim
9/1/22

Substitution (3")

assume x and y are distinct variables, and e, f and g are expressions.

Substitution rules for function abstractions
[e/x](Ax.f) = Ax.f

x in the expression f is a formal parameter (bounded)
can be renamed by an alpha reduction

then the expression f does not have x for a substitution

[e/x](Ay.f) = Ay.[elx]f

provided y is not free in e (this is called the "freshness" condition).

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 42
Informal description

}\){Qf [fix]e

eforxinf

v

[elx](A\x.f)

P ©

Young Won Lim
9/1/22

Substitution (3")

assume x and y are distinct variables, and e, f and g are expressions.

Substitution rules for function abstractions
[e/x](Ax.f) = Ax.f

[e/x](Ay.f) = Ay.[elx]f

provided y is not free in e (this is called the "freshness" condition).

the expression f may contain variable x
the expression e may contain variable y

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 43
Informal description

}\){Qf [fix]e
v

em0sn ©
r o

[eIx] (\y.f)

-

(Ay.[e/x])

Young Won Lim
9/1/22

Substitution (4)

Examples:

[yly](Ax.x) = AX.x

[y/X]((Ax.y) x)
= ([y/x](Ax.y)) ([y/x]x)
= (Ax.y)y

Note that the freshness condition does not allow us
to make the substitution [yIx](Ay.x) = Ay.([y/x]x) = Ay.y
because y is free in the expression y.
(Ay-x) [y/x]

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (1A) - 44
Informal description

Substitution rules
for function abstractions
[e/x](Ax.f) = Ax.f

[e/x](Ay.f) = Ay.[elx]f
provided y is not free in e
"freshness" condition).

the expression f
may contain variable x
the expression e

may contain variable y

Young Won Lim
9/1/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

Lambda Calculus (1A) - 45 Young Wogr}1|7i2r2
Informal description

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

