Jordan-block/2/Powers/Induction/Exercise
< Jordan-block < 2 < Powers < Induction
Let
M
=
(
λ
1
0
λ
)
{\displaystyle {}M={\begin{pmatrix}\lambda &1\\0&\lambda \end{pmatrix}}\,}
with
λ
∈
K
{\displaystyle {}\lambda \in K}
. Show by induction that
M
n
=
(
λ
n
n
λ
n
−
1
0
λ
n
)
{\displaystyle {}M^{n}={\begin{pmatrix}\lambda ^{n}&n\lambda ^{n-1}\\0&\lambda ^{n}\end{pmatrix}}\,}
holds.
To solution