Sample Midterm Problem 1
Given:
The vectors
,
, and
are given, with respect to an orthonormal
basis
, by

Find:
- (a) Evaluate
.
- (b) Evaluate
. Is
a tensor? If not, why not? If yes, what is the order of the tensor?
- (c) Name and define
and
.
- (d) Evaluate
.
- (e) Show that
.
- (f) Rotate the basis
by 30 degrees in the counterclockwise direction around
to obtain a new basis
. Find the components of the vector
in the new basis
.
- (g) Find the component
of
in the new basis
.
Solution
Part (a)
=128}](../9e92f1c5e73ae5ea6db427b855f94dc188b9b495.svg)

Part (d)


Part (e)

Because
cannot be an even or odd permutation of
.
Part (f)
The basis transformation rule for vectors is

where

Therefore,
![{\displaystyle {\begin{aligned}\left[L\right]&={\begin{bmatrix}\cos(30^{o})&\cos(90^{o}-30^{o})&\cos(90^{o})\\\cos(90^{o}+30^{o})&\cos(30^{o})&\cos(90^{o})\\\cos(90^{o})&\cos(90^{o})&\cos(0^{o})\end{bmatrix}}\\&={\begin{bmatrix}\cos(30^{o})&\sin(30^{o})&\cos(90^{o})\\-\sin(30^{o})&\cos(30^{o})&\cos(90^{o})\\\cos(90^{o})&\cos(90^{o})&\cos(0^{o})\end{bmatrix}}\\&={\begin{bmatrix}{\sqrt {3}}/2&1/2&0\\-1/2&{\sqrt {3}}/2&0\\0&0&1\end{bmatrix}}\end{aligned}}}](../ba5d7072279f064f7730757bda8b1c72ebfeedb4.svg)
Hence,

Thus,

Part (g)
The basis transformation rule for second-order tensors is

Therefore,
![{\displaystyle {\begin{aligned}D_{12}^{'}=&l_{11}l_{21}D_{11}+l_{12}l_{21}D_{21}+l_{13}l_{21}D_{31}+l_{11}l_{22}D_{12}+l_{12}l_{22}D_{22}+l_{13}l_{22}D_{32}+\\&l_{11}l_{23}D_{13}+l_{12}l_{23}D_{23}+l_{13}l_{23}D_{33}\\=&l_{11}(l_{21}D_{11}+l_{22}D_{12}+l_{23}D_{13})+l_{12}(l_{21}D_{21}+l_{22}D_{22}+l_{23}D_{23})+\\&l_{13}(l_{21}D_{31}+l_{22}D_{32}+l_{23}D_{33})\\=&({\frac {\sqrt {3}}{2}})\left[(-{\frac {1}{2}})(50)+({\frac {\sqrt {3}}{2}})(30)+(0)(0)\right]+({\frac {1}{2}})\left[(-{\frac {1}{2}})(-30)+({\frac {\sqrt {3}}{2}})(-18)+(0)(0)\right]+\\&(0)\left[(-{\frac {1}{2}})(100)+({\frac {\sqrt {3}}{2}})(60)+(0)(0)\right]\\=&({\frac {\sqrt {3}}{2}})\left[-25+15{\sqrt {3}}\right]+({\frac {1}{2}})\left[15-9{\sqrt {3}}\right]\\=&-25{\frac {\sqrt {3}}{2}}+{\frac {45}{2}}+{\frac {15}{2}}-9{\frac {\sqrt {3}}{2}}\\=&-17{\sqrt {3}}+30\end{aligned}}}](../cc484e1654f1f4850d9d4e6f0ca078ff9c259d7e.svg)
