Hu-Washizu Variational Principle
In this case, the admissible states are not required to meet any of the field equations or boundary conditions.
Let
denote the set of all admissible states and let
be
a functional on
defined by
![{\displaystyle {\mathcal {W}}[s]=\int _{\mathcal {B}}U({\boldsymbol {\varepsilon }})-\int _{\mathcal {B}}{\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}~dV-\int _{\mathcal {B}}({\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}+\mathbf {f} )\bullet \mathbf {u} ~dV+\int _{\partial {\mathcal {B}}^{u}}\mathbf {t} \bullet {\widehat {\mathbf {u} }}~dA+\int _{\partial {\mathcal {B}}^{t}}(\mathbf {t} -{\widehat {\mathbf {t} }})\bullet \mathbf {u} ~dA}](../75e1057fc5e4bcc0b87c6490cd92404fd6e23b0d.svg)
for every
.
Then,
![{\displaystyle \delta {\mathcal {W}}[s]=0}](../d191b3f1ee1174c46e62f38c10c0bc31f7ace248.svg)
at an admissible state
if and only if
is a solution of the mixed problem.