Example 1
Given:
The compatibility equations in terms of the strains are (in index notation)

The stress-strain relations for a linear elastic material are
![{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[(1+\nu )~\sigma _{ij}-\nu ~\sigma _{mm}~\delta _{ij}\right]}](../0f86a10eb0cbfe1b230e802945dc0db4b5643918.svg)
Show:
Substituting the stress-strain relations into the compatibility
equations, show that the compatibility equation of stress can be expressed as

Solution
Substituting the stress-strain relations into the left hand side of
the compatibility equations and multiplying both sides by
, we get,
![{\displaystyle {\begin{aligned}E~e_{ikr}~e_{jls}~\varepsilon _{ij,kl}&=e_{ikr}~e_{jls}~\left[(1+\nu )~\sigma _{ij,kl}-\nu ~\sigma _{mm,kl}~\delta _{ij}\right]\\&=(1+\nu )~e_{ikr}~e_{jls}~\sigma _{ij,kl}-\nu ~e_{ikr}~e_{jls}~\delta _{ij}~\sigma _{mm,kl}\\&=(1+\nu )~e_{ikr}~e_{jls}~\sigma _{ij,kl}-\nu ~e_{nkr}~e_{nls}~\sigma _{mm,kl}\\&=(1+\nu )~e_{ikr}~e_{jls}~\sigma _{ij,kl}-\nu ~e_{krn}~e_{lsn}~\sigma _{mm,kl}\end{aligned}}}](../d20fc964cbd0b0acff19e1ad09a96d90d28d9d90.svg)
Now, the
rule states that

Therefore,

Recall that,

Therefore,

Hence,

Hence shown.