Homomorphism space/Linear subspaces/Fact

< Homomorphism space < Linear subspaces

{{ Mathematical text/Fact |Text= {{ Factstructure|typ= |Situation=Let and be vector spaces over a field . |Condition=

|Segue= Then the following subsets are linear subspaces of . |Conclusion= {{ Enumeration4 |For a linear subspace , {{ Relationchain/display |S || {{Setcond| \varphi \in \operatorname{Hom}_{ K } { \left( V , W \right) } | \varphi {{|}}_U = 0 }} || || || |pm= }} is a linear subspace of . If and are finite-dimensional, then

|For a linear subspace ,

is a linear subspace of , which is isomorphic to . If and are finite-dimensional, then

|For linear subspaces and ,

is a linear subspace of . If and finite-dimensional, then

|For linear subspaces and ,

is a linear subspace of . }} |Extra= }} |Textform=Fact |Category= |Request=Linear subspaces in the space of homomorphisms }}