Homomorphism space/Direct sum decomposition/Fact

< Homomorphism space < Direct sum decomposition

{{ Mathematical text/Fact |Text= {{ Factstructure|typ= |Situation= Let be a field, and let and be -vector spaces. Let

and

de direct sum decompositions and let

denote the canonical projections. |Condition= |Segue= |Conclusion= Then the mapping {{ Mapping/display |name= | \operatorname{Hom}_{ K } { \left( V , W \right) } | \prod_{1 \leq i \leq n,\, 1 \leq j \leq m } \operatorname{Hom}_{ K } { \left( V_i , W_j \right) } |f| p_j \circ {{mabr| f {{|}}_{V_i} |}} |pm=, }} is an isomorphism. |Extra=If we consider as linear subspaces of , then we have the direct sum decomposition

}} |Textform=Fact |Category= |Request=Direct sum decomposition of the space of homomorphisms }}