We write P 1 − P 2 = u 1 + u 2 + u {\displaystyle {}P_{1}-P_{2}=u_{1}+u_{2}+u} with u 1 ∈ U 1 {\displaystyle {}u_{1}\in U_{1}} , u 2 ∈ U 2 {\displaystyle {}u_{2}\in U_{2}} , and u ∈ ( U 1 + U 2 ) ⊥ {\displaystyle {}u\in {\left(U_{1}+U_{2}\right)}^{\perp }} ; such a decomposition does always exist, u 1 , u 2 {\displaystyle {}u_{1},u_{2}} are not uniquely determined (in case U 1 ∩ U 2 ≠ 0 {\displaystyle {}U_{1}\cap U_{2}\neq 0} ), but u {\displaystyle {}u} is uniquely determined. We have
and Q 1 := P 1 − u 1 ∈ E 1 {\displaystyle {}Q_{1}:=P_{1}-u_{1}\in E_{1}} , and Q 2 := P 2 + u 2 ∈ E 2 {\displaystyle {}Q_{2}:=P_{2}+u_{2}\in E_{2}} . The distance between Q 1 {\displaystyle {}Q_{1}} and Q 2 {\displaystyle {}Q_{2}} is ‖ u ‖ {\displaystyle {}\Vert {u}\Vert } . For arbitrary points R 1 = Q 1 + v 1 ∈ E 1 {\displaystyle {}R_{1}=Q_{1}+v_{1}\in E_{1}} and R 2 = Q 2 + v 2 ∈ E 2 {\displaystyle {}R_{2}=Q_{2}+v_{2}\in E_{2}} fulfilling v 1 ∈ U 1 {\displaystyle {}v_{1}\in U_{1}} and v 2 ∈ U 2 {\displaystyle {}v_{2}\in U_{2}} , we have
that is,