Report 2, Problem 9
Problem Statement
Find and plot the solution for the L2-ODE-CC corresponding to 

with 
 
and initial conditions  ,
,  
In another figure, superimpose 3 figs.:(a)this fig. (b) the fig. in R2.6 p.5-6, and (c) the fig. in R2.1 p.3-7
Quadratic Equation
 with
with 


Homogeneous Solution
The solution to a L2-ODE-CC with two complex roots is given by
![{\displaystyle y(x)=e^{-{\frac {a}{2}}x}[Acos(\omega x)+Bsin(\omega x)]\!}](../../../510ae7db6943e388e2cd367f1aa44fc4f13f8348.svg)
where 
![{\displaystyle y(x)=e^{-2x}[Acos(3x)+Bsin(3x)]\!}](../../../6d7f71b17955c0f76363ac0f6b573e69e0eb226c.svg)
Solving for A and B
first initial condition 
![{\displaystyle y(x)=e^{-2x}[Acos(3x)+Bsin(3x)]\!}](../../../6d7f71b17955c0f76363ac0f6b573e69e0eb226c.svg)
![{\displaystyle y(0)=e^{-2*0}[Acos(3*0)+Bsin(3*0)]=1\!}](../../../a61630cc21c2412df2d9bfbe52a1f738cd572f1a.svg)

second initial condition 
![{\displaystyle y'(x)={\frac {d}{dx}}y(x)={\frac {d}{dx}}e^{-2x}[cos(3x)+Bsin(3x)]\!}](../../../cbb043b16f50f0ecab2705db00e771bca7457aba.svg)
![{\displaystyle y'(x)=e^{-2x}[(-2B-3)sin(3x)+(3B-2)cos(3x)]\!}](../../../30434049e26751b730283ee9687ba5ea0a8e815c.svg)
![{\displaystyle y'(0)=e^{-2*0}[(-2B-3)sin(3*0)+(3B-2)cos(3*0)]\!}](../../../be62daa0beda99ce3a4804d3ccce9faedbef87f6.svg)


so the solution to our L2-ODE-CC is 
                      ![{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}](../../../7bbd97a09c6c3f88feb037232191230bd797f00d.svg)
Solution to R2.6
After solving for the constants  and
 and  we have the following homogeneous equation
 we have the following homogeneous equation

Characteristic Equation and Roots


We have a real double root 
Homogeneous Solution
We know the homogeneous solution to a L2-ODE-CC with a double real root to be

Assuming object starts from rest
 ,
,  
Plugging in  and applying our first initial condition
 and applying our first initial condition


Taking the derivative and applying our second condition




Giving us the final solution
                 
Plots
Solution to this Equation
![{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}](../../../7bbd97a09c6c3f88feb037232191230bd797f00d.svg)

Superimposed Graph
Our solution: ![{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}](../../../7bbd97a09c6c3f88feb037232191230bd797f00d.svg) shown in blue
 shown in blue
Equation for fig. in R2.1 p.3-7:  shown in red
 shown in red
Equation for fig. in R2.6 p.5-6: shown in green
 shown in green

Egm4313.s12.team11.imponenti 03:38, 8 February 2012 (UTC)