Solution
15.

Since
, the function is odd.
![{\displaystyle a_{0}=(1/\pi )*[-1\int _{-\pi }^{-\pi /2}(x+\pi )dx+\int _{-\pi /2}^{\pi /2}(x)dx+\int _{\pi /2}^{\pi }(\pi -x)dx]}](../../../a3515ec49fdd8ef95aedb6e74ee844ba7b39b6ce.svg)
After simplification, 
.
Using Equation (5) on page 490, the exapansion becomes;

With
this becomes;
for n is "odd".
This means when n is even, 

17.


![{\displaystyle a_{0}=1/2[\int _{-1}^{0}(1+x)dx+\int _{0}^{1}(1-x)dx]}](../../../663792d020231d208ed32b73f0c4db7045053632.svg)
![{\displaystyle a_{0}=1/2[1-1/2+1-1/2]}](../../../57762d639f689e1bcd7d58eeb81c3590c3473f73.svg)

![{\displaystyle a_{n}=1/1[\int _{-1}^{0}(1+x)cos(n\pi *x/1)dx+\int _{0}^{1}(1-x)cos(n\pi *x/1)dx]}](../../../ecc54c05805473116b69ac5965dd79d368827f34.svg)
Simplifying results in;
![{\displaystyle a_{n}=2[1/(n^{2}\pi ^{2})_{(}-1)^{n}/(n^{2}\pi ^{2})]}](../../../82a4babc3b94dfce840755f8704669ff666085ce.svg)
So,

when n is odd.
![{\displaystyle b_{n}=1/1[\int _{-1}^{0}(1+x)sin(n\pi *x/1)dx+\int _{0}^{1}(1-x)sin(n\pi *x/1)dx]}](../../../9b3a3c83592e4975230374d189014a6e9669263f.svg)
Simplifying results in;


Since
for even n,
becomes
for even n.
