
ELF2 1D Virtual Memory

Young W. Lim

2021-12-27 Mon

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 1 / 96

Outline

1 Based on

2 Virtual Memory

3 Address Types

4 GNU ELF Addresses

5 Kernal Addresses

6 Kernel Logical Address

7 Kernel Virtual Address

8 User Virtual Address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 2 / 96

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 3 / 96

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 4 / 96

TOC: Virtual Memory in Operating System

Single address space
Virtual memory
Demand paging
Swapping
Page fault

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 5 / 96

Single address space (1)

simple systems
sharing the same memory space

memory and peripherals
all processes and OS

no memory proctection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 6 / 96

Single address space (2)

CPUs with single address space
8086 - 80286
ARM Cortex-M
8 / 16-bit PIC
AVR
most 8- and 16-bit systems

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 7 / 96

Single address space (3)

portable c programs expect flat memory
multiple memory access methods limit portability

management is tricky
need to know / detect total RAM
need to keep processes separated

no protection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 8 / 96

Virtual memory (1) address mapping

virtual memory
a system that uses an address mapping
maps virtual address space to physical address space

to physical memory RAM
to hardware devices

PCI devices
GPU RAM
On-SOC IP blocks

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 9 / 96

Virtual memory (2) memory management techqnique

virtual memory is a memory management technique
prvoides an idealized abstraction
of the storage resources
that are actually available on a given machine
creates the illusion to users
of a very large (main) memory
main storage, as seen by a process or task,
appears as a contiguous address space or
collection of contiguous segments.

https://en.wikipedia.org/wiki/Virtual_memory#Paged_virtual_memory

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 10 / 96

Virtual memory (3) virtual address sapce

the OS using a combination of HW and SW
maps a program’s memory addresses (virtual addresses),
into physical addresses in computer memory.

the OS manages
virtual address spaces and
the assignment of real memory to virtual memory

a virtual address space
may exceed the capacity of real memory
can reference greater memory than physical memory

https://en.wikipedia.org/wiki/Virtual_memory#Paged_virtual_memory

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 11 / 96

Virtual memory (4) memory management unit

mapping is performed in hardware
Memory Managemet Unit

address translation hardware in the CPU
automatically translates
virtual addresses to physical addresses

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 12 / 96

Virtual memory (5) memory management unit

software will only use virtual addreses
in its normal operation

the same instructions
for accessing RAM and mapped hardware

no performance penalty
in accessing already mapped RAM regions
in handling permissions

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 13 / 96

Virtual memory (6) process and address space

memory mapped hardware
hardware device memory can be mapped
into process’ address space
requires the kernel to perform the mapping

shared memory
physical RAM can be mapped
into multiple processes at once

memory regions can have access permissions
read
write
execute

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 14 / 96

Virtual memory (7) paging / segmentation

paging or segmentation techniques enable
to use more memory than physically available
to share memory used by libraries between processes
to free applications from managing a shared memory space
to increase security due to memory isolation

https://en.wikipedia.org/wiki/Virtual_memory#Paged_virtual_memory

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 15 / 96

Virtual memory (8) memory protection

each process can have its own memory mapping
one process’ RAM is invisible to other processes
built in memory protection
kernel RAM is invisiable to user space processes

memory can be moved
memory can be swapped to disk

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 16 / 96

Demand Paging (1)

1 If CPU try to refer a page
that is currently not available in the main memory
it generates an interrupt indicating memory access fault

2 The OS puts the interrupted process in a blocking state
to continue the execution, the OS must bring
the required page into the memory

3 The OS will search for the required page
in the logical address space

https://www.geeksforgeeks.org/virtual-memory-in-operating-system/

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 17 / 96

Demand Paging (2)

4 The required page will be brought
from logical address space to physical address space.

the page replacement algorithms are used
for the decision making of replacing the page
in physical address space.

5 The page table will updated accordingly.
6 The signal will be sent to the CPU

to continue the program execution and
it will place the process back into ready state

https://www.geeksforgeeks.org/virtual-memory-in-operating-system/

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 18 / 96

Swapping

swapping a process out means
removing all of its pages from memory

removed by the normal page replacement process.

suspending a process ensures that
it is not runnable while it is swapped out.
At some later time, the system swaps back the process
from the secondary storage to main memory
when a process is busy swapping pages in and out
then this situation is called thrashing

https://www.geeksforgeeks.org/virtual-memory-in-operating-system/

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 19 / 96

Page faults

a page fault is a CPU exception
generated when software attempts
to access an invalid virtual address

the virtual address is not mapped for the process requesting it
the processes has insufficient permissions for the address
the virtual address is valid, but swapped out

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 20 / 96

TOC: Address Types

Physical addresses
Logical addresses
Virtual addresses
Physical address space
Virtual address space
Logical vs. virtual addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 21 / 96

Physical addresses

physical address
identifies a physical location in a memory
the user never directly uses the physical address
but can access by the corresponding logical address.

physical address space
all physical addresses corresponding
to the logical addresses in a logical address space

https://www.geeksforgeeks.org/logical-and-physical-address-in-operating-system/

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 22 / 96

Logical addresses

logical address
generated by CPU while a program is running
since it does not exist physically,
it is also known as virtual address
used as a reference to access
the physical memory location by CPU

logical address space
the set of all logical addresses
generated by a program’s perspective.

https://www.geeksforgeeks.org/logical-and-physical-address-in-operating-system/

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 23 / 96

Virtual addresses

virtual addresses
the address you use in your programs

the address that your CPU use to fetch data
is not real (virtual)
must be translated via MMU
to its corresponding physical address

virtual address space
Linux running 32-bit has 4GB address space
each process has its own virtual address space

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 24 / 96

Physical address space - one per machine

physical addresses are provided directly by the machine
one physical address space per machine
addresses typically range from some minumum (sometimes 0)
to some maximum,
some parts of this range are usually used
by the OS and/or devices,
and not available for user processes

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 25 / 96

Virtual address space - one per process

virtual addresses (or logical addresses) are
addresses provided by the OS
one virtual address space per process
addresses typically start at zero, but not necessarily
address space may consist of several segments

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 26 / 96

Logical vs. virtual addresses (1) assembly program

logical addresses are those seen and used
by the assembly programmer
physical addresses are those directly corresponding to
the logic levels of the hardware address bus

logical and physical addresses can be indentical in simple systems
the MMU converts logical addresses into physical addresses
the conversion scheme vary with the architecture of the system.

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 27 / 96

Logical vs. virtual addresses (2) conversion

logical and physical addresses can be
indentical in simple systems

the MMU converts logical addresses
into physical addresses

the conversion scheme vary
with the architecture of the system.

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 28 / 96

Logical vs. virtual addresses (3) conversion scheme

widely used conversion schemes are
those employing virtual memory

paging and segmentation
the logical address in such a system is
also called virtual address.

a virtual address is a logical address
on a system with virtual memory

virtual memory is called this way
because a logical (i.e. virtual) address does
not necessarily map to an actual physical address

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 29 / 96

Logical vs. virtual addresses (4) address mapping

the memory content addressed by a virtual address
could reside only on disk
have to be brought into main memory
before it can be used

on a system without virtual memory
a logical address always maps to a physical address,

to some "real" memory e.g. RAM, ROM
to some register in a device
if memory-mapped I/O is implemented

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 30 / 96

Logical vs. virtual addresses (5) demand paging

consider an access to a virtual address only a tentative access
if the memory content being accessed is
already in physical memory, access is granted
Otherwise an interrupt is generated (page miss)
and an interrupt routine is called

will load the needed memory page into physical memory
from its actual location (typically the page file on disk).

is also responsible for freeing some physical memory
if there is no room left to load the requested page.

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 31 / 96

Logical vs. virtual addresses (6) CPU vs RAM addresses

Logical address
the address as the CPU instructions are using.
there can be many more such addresses than
there is RAM (or other memory or IO) in the system.
Physical address
the address that is sent to the RAM (or ROM, or IO)
for a read or write operation.

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 32 / 96

Logical vs. virtual addresses (7) translate or interrupt

For a simple system, physical address = logical address
larger systems are generally demand-paged virtual memory systems,

the MMU translates a logical address to a physical address,
or alerts the OS (_interrupt_) to take action

to allocate a page,
read a page from disk, or
deny access to a page -> trap or fault

https://electronics.stackexchange.com/questions/178681/difference-between-logical-and-virtual-addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 33 / 96

TOC: GNU ELF Addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 34 / 96

ELF object files

the linker combines input files
into a single output file

input object files
output object / executable file
all in object file format

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 35 / 96

ELF sections

each object file has a list of sections
input sections
output sections

each section in an object file has
a name
a size
section contents :
most sections are associated with block of data

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 36 / 96

ELF section types

a loadable section
the contents should be loaded into memory
when the output file is run

an allocatable section
a section with no contents may be allocatable
an area in memory should be set aside
but nothing should be loaded there
in some cases, this memory must be filled with /zero/es

sections for debugging

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 37 / 96

ELF sections vs segments (1)

section: tell the linker if a section is either:
raw data to be loaded into memory,

e.g. .data, .text, etc.

formatted metadata about other sections,
that will be used by the linker,
but disappear at runtime

e.g. .symtab, .srttab, .rela.text

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 38 / 96

ELF sections vs segments (2)

segment: tells the operating system:
where should a segment be loaded into virtual memory
what permissions the segments have (read, write, execute).

this can be efficiently enforced by the processor

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 39 / 96

ELF sections (1)

As we have mentioned, sections make up segments. Sections are a way
to organise the binary into logical areas to communicate information
between the compiler and the linker. In some special binaries, such as
the Linux kernel, sections are used in more specific ways
We’ve seen how segments ultimately come down to a blob of data in a
file on disk with some descriptions about where it should be loaded and
what permissions it has. Sections have a similar header to segments

https://www.bottomupcs.com/elf.xhtml

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 40 / 96

ELF sections (2)

Section Header
typedef struct {

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} ELF32_Shdr;

https://www.bottomupcs.com/elf.xhtml

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 41 / 96

ELF sections (3)

Sections have a few more types defined for the sh_type field; for
example a section of type SH_PROGBITS is defined as a section that
hold binary data for use by the program. Other flags say if this section
is a symbol table (used by the linker or debugger for example) or
maybe something for the dynamic loader. There are also more
attributes, such as the allocate attribute which flags that this section
will need memory allocated for it.

https://www.bottomupcs.com/elf.xhtml

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 42 / 96

Load and run addresses (1)

The load address is the location of an object
in the load image
The run address is the location of the object
as it exists during program execution
An object is a chunk of memory.
It represents a section, segment, function, or data.

https://downloads.ti.com/docs/esd/SPRU513/load-and-run-addresses-slau1317366.html

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 43 / 96

Load and run addresses (2)

The load and run addresses for an object may be the same
This is commonly the case for program code and read-only data,
such as the .econst section.

the program can read the data directly from the load address

sections that have no initial value,
such as the .ebss section

do not have load data
considered to have the same load and run addresses
if you specify different load and run addresses
for an uninitialized section,
the linker provides a warning and
ignores the load address.

https://downloads.ti.com/docs/esd/SPRU513/load-and-run-addresses-slau1317366.html

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 44 / 96

Load and run addresses (3)

The load and run addresses for an object may be different.
This is commonly the case for writable data,
such as the .data section.
The .data section’s starting contents are placed in ROM
and copied to RAM.
This often occurs during program startup,
but depending on the needs of the object,
it may be deferred to sometime later in the program

https://downloads.ti.com/docs/esd/SPRU513/load-and-run-addresses-slau1317366.html

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 45 / 96

p_vaddr and p_paddr (1)

p_vaddr is a virtual address,
p_paddr is a physical address.

these are the addresses at which
the data in the file will be loaded.

they map the contents of the file
into their corresponding memory locations

https://stackoverflow.com/questions/16812574/elf-files-what-is-a-section-and-why-do-we-need-it

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 46 / 96

p_vaddr and p_paddr (2)

physical addresses are the raw memory addresses.
on modern operating systems,
physical addresses are no longer used in the user space
Instead, user space programs use virtual addresses.

the OS deceives that
the user space program uses the memory alone,
the entire address space is available for it.

the OS maps those virtual addresses
to physical addresses in the actual memory,
and it does it transparently to the program.

https://stackoverflow.com/questions/16812574/elf-files-what-is-a-section-and-why-do-we-need-it

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 47 / 96

p_vaddr and p_paddr (3)

not every address in the virtual address space
is available simultaneously

limited by the actual physical memory available.

the OS just maps the memory for the segments
the program actually uses

if the process tries to access some unmapped memory,
the operating system incurs memory access fault
(The program can address it, but it cannot access it)

https://stackoverflow.com/questions/16812574/elf-files-what-is-a-section-and-why-do-we-need-it

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 48 / 96

LMA & VMA (1)

every loadable or allocatable output section has two addresses.
the VMA (Virtual Memory Address)

the address the output section will have
when the output file is run

the LMA (Load Memory Address)
the address at which the output section will be loaded

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 49 / 96

LMA & VMA (2)

in most cases, VMA and LMA will be the same
VMA and LMA might be different
when a data section is loaded from ROM,
and then copied into RAM when the program starts up

this technique is often used to initialize global variables
in a ROM based system
in this case the ROM address would be the LMA
and the RAM address would be the VMA

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 50 / 96

LMA & VMA (3)

The section header contains a single address.
the address in the section header is the VMA
The program headers contain the mapping of VMA to LMA

objdump -x

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 51 / 96

LMA & VMA (4)

ELF section header example
Sections:
Idx Name Size VMA LMA File off Algn
<a few lines removed>

3 .bss 00000004 00000048 0000018c 00000240 2**1
ALLOC

.bss has a VMA 0x048

.bss has a LMA 0x18c

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 52 / 96

LMA & VMA (5)

ELF program header example
Program Header:
<a few lines removed>

LOAD off 0x00000240 vaddr 0x00000048 paddr 0x0000018c align 2**0
filesz 0x00000000 memsz 0x00000004 flags rw-

a vaddr of 0x048 (VMA)
a paddr of 0x18c (LMA)

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 53 / 96

LMA & VMA (6)

ELF file segment does have the physical address attribute
ELF file section does not have physical address attribute.

It is possible though to map sections
to corresponding segment memory.

The meaning of physical address is architecture dependent
and may vary between different OS’s and hardware platforms.

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 54 / 96

LMA & VMA (7)

VMA and LMA are GNU utility terminology
not in the ELF specification.
an ELF executable file has program header fields :

p_paddr
p_vaddr

https://stackoverflow.com/questions/39888381/elf-loading-when-vma-lma

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 55 / 96

LMA & VMA (8)

p_vaddr
this member gives the virtual address
at which the first byte of the segment resides in memory

p_paddr
on systems for which physical addressing is relevant,
this member is reserved for the segment’s physical address

because System V ignores physical addressing
for application programs,
this member has unspecified contents
for executable files and shared objects.

https://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 56 / 96

LMA & VMA (9)

by default, ARM IDE DS-5 uses p_vaddr, which is the standard

Usage of p_paddr is a quality of implementation,
and is left very loosely defined in the specification.

The ARM Compiler, Linker and C Library
does not generate this information (p_vaddr, p_paddr)
since the relocation process is handled internally
(scatter loading).

https://stackoverflow.com/questions/39888381/elf-loading-when-vma-lma

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 57 / 96

LMA & VMA (10)

some environments use p_paddr
not as a physical address,
but the load address (hence LMA),

some use p_paddr
as an address to resolve symbols
before and after MMU is enabled

https://stackoverflow.com/questions/39888381/elf-loading-when-vma-lma

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 58 / 96

TOC: Kernel Addresses

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 59 / 96

Kernel address in linux (1)

in linux, the kernel uses virtual addresses
as user space processes do
this is not true of all OS’s

virtual address space is split
1 the upper part is used for the kernel
2 the lower part is used for user space
3 32-bit linux have the split address 0xc0000000

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 60 / 96

Kernel address in linux (2)

By default, the kernel uses the top 1GB
of virtual address space
each user space process gets the lower 3GB
of virtual address space

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 61 / 96

Kernel address in linux (3)

kernel address space is the area
above CONFIG_PAGE_OFFSET

for 32-bit, this is configurable at kernel build time
the kernel can be given a different amount
of address space as desired

for 64-bit, the split varies by architecture
but it is high enough

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 62 / 96

Kernel address in linux (4)

three kinds of virtual addresses in Linux
Kernel

Kernel Logical Address
Kernel Virtual Address

User Space
User Virtual Address

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 63 / 96

Kernel address in linux (5)

Consider a 32bit x86 Linux system with 4 GB of RAM memory
Kernel logical address

upto 896 MB
allocated using kmalloc()
one to one mapped

Kernel virtual address
128MB (1024-896, above 896MB kernel logical address)
allocated using vmalloc()
virtually contiguous but physically non-contiguous pages
(scattered within RAM)

https://stackoverflow.com/questions/58837677/memory-mapping-in-linux-kernel-use-of-vamlloc-and-kmalloc

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 64 / 96

Kernel address in linux (6)

the physical memory is splitted into 2 zones
one zone that would be managed by kmalloc()

kmalloc() allocates memory from the 0 to 896MB
within the RAM and not beyond that.

another zone that is managed by vmalloc()
vmalloc() to allocates memory anywhere
from 896MB to 4GB range within the RAM
(anywhere in "896MB or higher" range)

https://stackoverflow.com/questions/58837677/memory-mapping-in-linux-kernel-use-of-vamlloc-and-kmalloc

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 65 / 96

Kernel address in linux (7)

3 different memory managers

1 Physical RAM manager
mostly keeping track of pages of free physical RAM

2 Virtual space manager
what is mapped into each virtual address space
working with fixed size pages

3 Heap memory manager
allowing a larger area of the virtual address space
to be split up into arbitrary sized pieces

https://stackoverflow.com/questions/58837677/memory-mapping-in-linux-kernel-use-of-vamlloc-and-kmalloc

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 66 / 96

Low / High Memory (1)

low memory
physical memory upto $<=$~896MB~
has a kernel logical address
physically contiguous

high memory
physical memory beyond > 896MB
has no logical address
not physically contiguous when used in the kernel
only on 32-bit

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 67 / 96

Low / High memory (2)

Low memory
Memory for which logical addresses exist in kernel space
On almost every system you will likely encounter,
all memory is low memory.

High memory
Memory for which logical addresses do not exist,
because it is beyond the address range
set aside for kernel virtual addresses

https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.htmlhttps://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 68 / 96

(1) Logical mapping

the kernel maps most of the kernel virtual address space
to perform 1:1 mapping with an offset of
the top part of physical memory (3GB - 4GB)

slightly less then for 1Gb for 32bit x86
can be different for other processors or configurations

for kernel code on x86 address 0xc00000001
is mapped to physical address 0x1.
This is called logical mapping

a 1:1 mapping (with an offset) that allows the kernel
to access most of the physical memory of the machine.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 69 / 96

(2) Virtual mapping

in the following cases, the kernel keeps a region
at the top of its virtual address space
where it maps a "random" page

when we have more then 1Gb physical memory on a 32bit machine,
when we want to reference non-contiguous
physical memory blocks as contiguous
when we want to map memory mapped IO regions

this mapping does not follow the 1:1 pattern of
the logical mapping area.

This is called the virtual mapping.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 70 / 96

(3) Mapping mechanism

on many platforms (x86 is an example),
both the logical and virtual mapping are done
using the same hardware mechanism
(TLB controlling virtual memory).

In many cases, the logical mapping is actually done
using virtual memory facility of the processor,
(this can be a little confusing)

The difference is in which mapping scheme is used:
1:1 for logical
random for virtual (paging)

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 71 / 96

(4) Two types of kernel addressing

1 Logical Addressing
segmented addressing
address is formed by base and offset
offset in the program is always used
with the base value in the segment descriptor

2 Linear Addressing : also called virtual address
Paging
virtual adresses are contigous
physical addresses are not contiguous

3 Physical Addressing
the actual address on the Main Memory

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 72 / 96

(5) Kernel logical address

kernel logical addresses use
normal CPU memory access functions.
On 32-bit systems,
only 4GB = 232 of kernel logical address space exists,
even if more physical memory than that is in use.
logical address space supported by physical memory
can be allocated with kmalloc()

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 73 / 96

(6) Kernel virtual address

kernel virtual addresses do not necessarily have
corresponding logical addresses.
allocate physical memory with vmalloc and
get a virtual address that has
no corresponding logical address
(on 32-bit systems with PAE, for example).
use kmap() to assign a logical address
to that virtual address.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 74 / 96

(7) Address from 3GB to 4GB and beyond

in linux, the kernel memory (in address space) is
beyond 3 GB, i.e. 0xc000000.
the addresses used by Kernel are not physical addresses

to map the virtual address from 3GB to 4GB
it uses PAGE_OFFSET.

no page translation is involved.
contiguous address (virtual and physical)
kmalloc() is used
except 896 MB on x86.

beyond the address space from 3GB to 4GB,
paging is used for translation.

vmalloc returns these addresses

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 75 / 96

(8) Physically contiguous or not

to get kernel memory in byte-sized chunks.

virtual address physical address
kmalloc() contiguous contiguous
vmalloc() contiguous not necessarily contiguous

https://stackoverflow.com/questions/116343/what-is-the-difference-between-vmalloc-and-kmalloc

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 76 / 96

(9) kmalloc() and vmalloc()

On a 32-bit system
kmalloc()

returns the kernel logical address (it is a virtual address)
the direct mapping (constant offset)
a contiguous physical chunk of RAM.
suitable for DMA where we give only

vmalloc()
returns the kernel virtual address
paging (not direct mapping)
not necessarily a contiguous chunk of RAM
Useful for large memory allocation and
in cases where non-contiguous physicl memory is allowed

https://stackoverflow.com/questions/116343/what-is-the-difference-between-vmalloc-and-kmalloc

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 77 / 96

kmap (1)

kmap returns a kernel virtual address
for any page in the system.

for low-memory pages
it just returns the logical address of the page;
for high-memory pages,
creates a special mapping in a dedicated part
of the kernel address space

https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 78 / 96

kmap (2)

mappings created with kmap
should always be freed with kunmap;
a limited number of such mappings is available,
so it is better not to hold on to them for too long.
kmap calls maintain a counter, to handle the case where
two or more functions both call kmap on the same page
kmap can sleep if no mappings are available.

https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 79 / 96

Physical Address Extension (PAE)

PAE sometimes referred to as Page Address Extension,
is a memory management feature for the x86 architecture.
It defines a page table hierarchy of three levels (instead of two),
with table entries of 64 bits each instead of 32,
allowing these CPUs to directly access a physical address space
larger than 4 gigabytes (232 bytes).

https://en.wikipedia.org/wiki/Physical_Address_Extension

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 80 / 96

TOC: Kernel Logical Address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 81 / 96

Kernel logical addresses (1)

normal address space of the kernel
kmalloc()

virtual addresses are a fixed offset
from their physical addresses
virtual 0xc0000000 → physical 0x00000000
easy conversion between physical and virtual addresses

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 82 / 96

Kernel logical addresses (2)

kernel logical addreses can be converted to and from
physical addresses using these macros

__pa(x) to physical address
__va(x) to logical address

for small memory systems (less than 1G of RAM)
kernel logical address space starts at PAGE_OFFSET
and goes through the end of physical memory

#define __pa(x) ((unsigned long) (x) - PAGE_OFFSET)
#define __va(x) ((void *)((unsigned long) (x) + PAGE_OFFSET))

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 83 / 96

Kernel logical addresses (3)

kernel logical address space includes
memory allocated with kmalloc()
and most other allocation methods
kernel stacks per process

kernel logical memory can
never be swapped out

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 84 / 96

Kernel logical addresses (4)

kernel logical addresses use a fixed mapping
between physical and virtual address space
this means virtually contiguous regions
are by nature also physically contiguous
this combined with inability to be swapped out,
makes them suitable for DMA transfers

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 85 / 96

Kernel logical addresses (5)

for 32-bit large memory systems (> 1GB RAM)
not all of the physical RAM can be mapped
into the kernel’s address space
kernel address space is the bottom 1GB of
virtual address space, by default

the top part of physical memory (3GB - 4GB)

upto 104 MB is reserved at the top of
the kernel memory space
for non-contiguous allocation
vmalloc()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 86 / 96

Kernel logical addresses (6)

in a large memory case,
only the top part of physical RAM
is mapped directly into
kernel logical address space

the top part of physical memory (3GB - 4GB)

this case is never applied to 64-bit systems
there is always enough kernel address space
to accommodate all the RAM

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 87 / 96

TOC: Kernel Virtual Address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 88 / 96

Kernel virtual addresses (1)

kernel virtual addresses are
above the kernel logical address mapping

kernel virtual addresses - vmalloc()
kernel logical addresses - kmalloc()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 89 / 96

Kernel virtual addresses (2)

kernel virtual addresses are used for
non-contiguous memory mappings

often for large buffers which could potentially
be too large to find contiguous memory
vmalloc()

memory-mapped I/O
map peripheral devices into kernel
PCI, SoC IP blocks
ioremap(), kmap()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 90 / 96

Kernel virtual addresses (3)

the important difference is that memory
in the kernel virtual address area (vmalloc() area)
is non-contiguous physically
this makes it easier to allocate, especially
for large buffers on small memory systems
this makes it unsuitable for DMA

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 91 / 96

Kernel virtual addresses (4)

in a large memory situation,
the kernel virtual address area is smaller,
because there is more physical memory
an interesting case, where more memory means
less space for kernel virtual addresses
in 64-bit, of course, this doesn’t happen,
as PAGE_OFFSET is large, and
there is much more virtual address space

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 92 / 96

TOC: User Virtual Address

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 93 / 96

User virtual addresses (1)

represent memory used by user space programs
the most of the memory on most systems
where the most of the compilation is

all addresses below PAGE_OFFSET

each process has its own mapping
threads share a mapping
complex behavior with clone(2)

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 94 / 96

User virtual addresses (2)

kernel logical addresses use a fixed mapping
user space processes make full use of the MMU

only the used portions of RAM are mapped
memory is not contiguous
memory may be swapped out
memory can be moved

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 95 / 96

User virtual addresses (3)

since user virtual addresses are not guaranteed
to be swapped in, or even allocated at all,

user buffers are not suitable for use
by the kernel (or for DMA), by default

each process has its own memory map
struct mm pointers in task_struct

at context switch time, the memory map is changed
this is part of the overhead

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF2 1D Virtual Memory 2021-12-27 Mon 96 / 96

	Based on
	Virtual Memory
	Address Types
	GNU ELF Addresses
	Kernal Addresses
	Kernel Logical Address
	Kernel Virtual Address
	User Virtual Address

