
Young Won Lim
06/19/2025

Data Types

Young Won Lim
06/19/2025

 Copyright (c) 2011-2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Data Types 3 Young Won Lim
06/19/2025

4 Classes of Data Types

● Scalar Type

● Composite Type

● Access Type

● File Type

● Enumeration Type
● Numerical Data Types

- Integer
- Real

● Physical Data Types

● Array
● Record

dynamic memory allocation

test vectors

Data Types 4 Young Won Lim
06/19/2025

4 Classes of Data Types

entity FULLADDER is

 port(A, B, CARRY_IN : in bit;

 SUM, CARRY : out bit);

end FULLADDER;

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

architecture MIX of FULLADDER is

 component HALFADDER

 port(A, B : in bit;

 SUM, CARRY : out bit);

 signal W_SUM, W_CARRY1, W_CARRY2 : bit;

begin

 HA1: HALFADDER

 port map(A, B, W_SUM, W_CARRY1);

 HA2: HALFADDER

 port map(CARRY_IN, W_SUM,

 SUM, W_CARRY2);

 CARRY <= W_CARRY1 or W_CARRY2;

end MIX;

Data Types 5 Young Won Lim
06/19/2025

4 Classes of Data Types

 Every signal has a type

 Type specifies possible values

 Types has to be defined at signal declaration …

 … either in

 entity: port declaration,

or in

 architecture: signal declaration

 Types have to match

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

 port(A, B, CARRY_IN : in bit;

 SUM, CARRY : out bit);

 port(A, B : in bit;

 SUM, CARRY : out bit);

 signal W_SUM, W_CARRY1, W_CARRY2 : bit;

Data Types 6 Young Won Lim
06/19/2025

4 Classes of Data Types

In VHDL, signals must have

a data type associated with them

that limits the number of possible values.

This type has to be fixed when the signal is declared,

either as entity port or an internal architecture signal,

and can not be changed during runtime.

Whenever signal values are updated,

the data types on both sides of

the assignment operator ’<=’ have to match.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 7 Young Won Lim
06/19/2025

Standard Data Types

package STANDARD is

 type BOOLEAN is (FALSE,TRUE);

 type BIT is (‘0‘,‘1‘);

 type CHARACTER is (-- ascii set);

 type INTEGER is range

 -- implementation_defined

 type REAL is range

 -- implementation_defined

 -- BIT_VECTOR, STRING, TIME

end STANDARD;

 Every type has a number of possible values

 Standard types are defined by the language

 User can define his own types

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 8 Young Won Lim
06/19/2025

Standard Data Types

A number of data types are already defined

in the standard package

which is always implicitly referenced.

’boolean’ is usually used to control the flow of the VHDL execution

while ‘bit’ uses level values (’0’, ’1’) instead of truth values (’false’, ’true’)

and is therefore better suited to model wires.

Number values can be communicated

via signals of type ’integer’ or ’real’.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 9 Young Won Lim
06/19/2025

Standard Data Types

The actual range and accuracy

depends on the platform implementation

and only lower bounds are defined,

e.g. integers are guaranteed to be at least 32 bits wide.

Floating point operations can not be synthesized automatically,

yet, i.e. the use of ’real’ data types is restricted to testbench applications.

The same applies to ’character’ and ’time’.

Real types are not synthesizeable:

 You have to decide how many bits

will be used for the digits pre and after the decimal point!

 you have to use synthesizeable division algorithms

to calculate them

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 10 Young Won Lim
06/19/2025

Data Type ‘time”

architecture EXAMPLE of TIME_TYPE is

 signal CLK : bit := ’0’;

 constant PERIOD : time := 50 ns;

begin

 process

 begin

 wait for 50 ns;

 ...

 wait for PERIOD;

 ...

 wait for 5 * PERIOD;

 ...

 wait for PERIOD * 5.5;

 end process;

...

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

 -- concurrent signal assignment

 CLK <= not CLK after 0.025 us;

 -- or with constant time

 -- CLK <= not CLK after PERIOD/2;

end EXAMPLE;

Data Types 11 Young Won Lim
06/19/2025

Data Type ‘time”

 Usage

 Testbenches

 Gate delays

 Multiplication / division

 Multiplied / divided by integer / real

 Returns TIME type

 Internally in smallest unit (fs)

 Available time units fs, ps, ns, us, ms, sec, min, hr

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 12 Young Won Lim
06/19/2025

Data Type ‘time”

’time’ is a special data type

as it consists out of a numerical value

and a physical unit.

It is used to delay the execution of statements

for a certain amount of time, e.g. in testbenches or

to model gate and propagation delays.

Signals of data type ’time’ can be multiplied

or divided by ’integer’ and ’real’ values.

The result of these operations remains

of data type ’time’.

The internal resolution of VHDL simulators

is set to femto-seconds (fs).

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 13 Young Won Lim
06/19/2025

Definition of Arrays

Signal A_BUS, Z_BUS : bit_vector (3 downto 0);

Definition of Arrays

 Collection of signals of the same type

 Predefined arrays

 bit_vector (array of bit)

 string (array of character)

 Unconstrained arrays:

definition of actual size during signal/port declaration

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 14 Young Won Lim
06/19/2025

Definition of Arrays

Arrays are useful to group

signals of the same type and meaning.

Two unconstrained array data types,

i.e. whose range is not limited,

are predefined in VHDL:

 ’bit_vector’ and ’string’

are arrays of ’bit’ and ’character’ values, respectively.

Please note that the array boundaries

have to be fixed during signal declarations,

e.g. ’bit_vector(3 downto 0)’.

Only constrained arrays may be used

as entity ports or architecture signals.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 15 Young Won Lim
06/19/2025

‘integer’ and ‘bit’ types

architecture EXAMPLE_1 of DATATYPES

 is

 signal SEL : bit;

 signal A, B, Z :

 integer range 0 to 3;

begin

 A <= 2;

 B <= 3;

 process(SEL,A,B)

 begin

 if SEL = ‘1’ then

 Z <= A;

 else

 Z <= B;

 end if;

 end process;

end EXAMPLE_1;

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

architecture EXAMPLE_2 of DATATYPES

 is

 signal SEL : bit;

 signal A, B, Z :

 bit_vector(1 downto 0);

begin

 A <= "10";

 B <= "11";

 process(SEL,A,B)

 begin

 if SEL = ‘1’ then

 Z <= A;

 else

 Z <= B;

 end if;

 end process;

end EXAMPLE_2;

Data Types 16 Young Won Lim
06/19/2025

Definition of Arrays

Integer signals will be mapped

to a number of wires during synthesis.

These wires could be modelled via bit vectors as well,

yet ’bit_vector’ signals do not have

a numerical interpretation associated with them.

Therefore the synthesis result

for the two example architectures would be the same.

The process models a simple multiplexer

which selects the input A as source for its output Z

when the select signal SEL is ’1’ and the input B otherwise.

Please note that the multiplexer process

is exactly the same for both data types!

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 17 Young Won Lim
06/19/2025

Assignment with Array Types

architecture EXAMPLE of ARRAYS is

 signal Z_BUS : bit_vector (3 downto 0);

 signal C_BUS : bit_vector (0 to 3);

begin

 Z_BUS <= C_BUS;

end EXAMPLE;

 Z_BUS(3) C_BUS(0)⇐
 Z_BUS(2) C_BUS(1)⇐
 Z_BUS(1) C_BUS(2)⇐
 Z_BUS(0) C_BUS(3)⇐

Elements are assigned according to their position, not their number

The direction of arrays should always be defined the same way

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 18 Young Won Lim
06/19/2025

Assignment with Array Types

Notes

Special care is necessary when signal assignments with arrays are carried out.

Although the data type and the width of the signals have to match, this is not true for the order of the
array elements.

The values are assigned according to their position within the array, not according to their index.

Therefore it is highly recommended to use only one direction (usually ’downto’ in hardware applications)
throughout your designs.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 19 Young Won Lim
06/19/2025

Bit String Literals

architecture EXAMPLE of ASSIGNMENT is

 signal Z_BUS : bit_vector (3 downto 0);

 signal BIG_BUS :bit_vector (15 downto 0);

begin

 -- legal assignments:

 Z_BUS(3) <= '1';

 Z_BUS <= "1100";

 Z_BUS <= b"1100";

 Z_BUS <= x"c";

 Z_BUS <= X"C";

 BIG_BUS <= B"0000_0001_0010_0011";

end EXAMPLE;

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 20 Young Won Lim
06/19/2025

Bit String Literals

 Single bit values are enclosed in '.'

 Vector values are enclosed in “…”

 optional base specification (default: binary)

 Values may be separated by underscores to improve readability

Different specification of single bits an bit vectors

VHDL’93: Valid assignments for the data type ‘bit’ are also valid for all character arrays, e.g.
‘std_(u)logic_vector

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 21 Young Won Lim
06/19/2025

Bit String Literals

Notes

The specification of signal values is different for the base types ’character’ and ’bit’ and their
corresponding array types ’string’ and ’bit_vector’. Single values are always enclosed in single quotation
marks (’), while double quotation marks (“) are used to specify array values.

As bit vectors are often used to represent numerical values, VHDL offers several possibilities to increase
the readability of bit vector assignments.

First, a base for the following number may be specified. Per default binary data consisting of ’0’s and ’1’s
is assumed. Please note that the values have to enclosed in double quotation marks even though only a
single symbol might be necessary when another base is used! Additionally, underscores (_) may be
inserted at will to split long chains of numbers into smaller groups in order to improve readability.

Since VHDL’93, the same rules apply to the enhanced bit vector types ’std_(u)logic_vector’, which will be
discussed later on, as well.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 22 Young Won Lim
06/19/2025

Concatenation

architecture EXAMPLE_1 of CONCATENATION is

 signal BYTE : bit_vector (7 downto 0);

 signal A_BUS, B_BUS :bit_vector (3 downto 0);

begin

 BYTE <= A_BUS & B_BUS;

end EXAMPLE_1;

Resulting signal assignment:

 BYTE(7) A_BUS(3)⇐
 BYTE(6) A_BUS(2)⇐
 BYTE(5) A_BUS(1)⇐
 BYTE(4) A_BUS(0)⇐
 BYTE(3) B_BUS(3)⇐
 BYTE(2) B_BUS(2)⇐
 BYTE(1) B_BUS(1)⇐
 BYTE(0) B_BUS(0)⇐
https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 23 Young Won Lim
06/19/2025

Concatenation

architecture EXAMPLE_2 of CONCATENATION is

 signal Z_BUS : bit_vector (3 downto 0);

 signal A_BIT, B_BIT, C_BIT, D_BIT :bit;

begin

 Z_BUS <= A_BIT & B_BIT & C_BIT & D_BIT;

end EXAMPLE_2;

Resulting signal assignment:

 Z_BUS(3) A_BIT⇐
 Z_BUS(2) B_BIT⇐
 Z_BUS(1) C_BIT⇐
 Z_BUS(0) D_BIT⇐

The Concatenation operator ‘&’ is allowed on the right side of the signal assignment operator ‘ ’ , only ⇐

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 24 Young Won Lim
06/19/2025

Concatenation

Notes

As signal assignments require matching data types on both sides of the operator it is sometimes
necessary to assemble an array in the VHDL code.

The concatenation operator ’&’ groups together the elements on its sides which have to be of the same
data type, only.

Again, the array indices are ignored and only the position of the elements within the arrays is used. The
concatenation operator may be used on the right side of signal assignments, only!

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 25 Young Won Lim
06/19/2025

Aggregate

architecture EXAMPLE of AGGREGATES is

 signal BYTE : bit_vector (7 downto 0);

 signal Z_BUS : bit_vector (3 downto 0);

 signal A_BIT, B_BIT : bit;

 signal C_BIT, D_BIT : bit;

begin

 Z_BUS <= (A_BIT, B_BIT, C_BIT, D_BIT);

 (A_BIT, B_BIT, C_BIT, D_BIT) <= bit_vector'("1011");

 (A_BIT, B_BIT, C_BIT, D_BIT) <= BYTE(3 downto 0);

 BYTE <= (7 => '1', 5 downto 1 => '1', 6 => B_BIT,

 others => '0');

end EXAMPLE;

 Aggregates bundle signals together

 May be used on both sides of an assignment

 Keyword ‘other’ selects all remaining elements

Some aggregate constructs may not be supported by your synthesis tool

Assignment of ‘0’ to all bits of a vector regardless of the width: VECTOR (others ‘0’); ⇐ ⇒https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 26 Young Won Lim
06/19/2025

Aggregate

Notes

Another way of assigning signals which does not suffer from this limitation is via the aggregate construct.

Here, the signals that are to build the final array are enclosed in a ’(’ ’)’ pair and separated by ’,’.

Instead of a simple concatenation, it is also possible to address the array elements explicitly by their
corresponding index, as shown in the last signal assignment statement of the aggregate example.

The keyword ’others’ may be used to select those indices that have not been addressed, yet.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 27 Young Won Lim
06/19/2025

Slices of Arrays

architecture EXAMPLE of SLICES is

 signal BYTE : bit_vector (7 downto 0);

 signal A_BUS : bit_vector (3 downto 0);

 signal Z_BUS : bit_vector (3 downto 0);

 signal A_BIT : bit;

begin

 BYTE (5 downto 2) <= A_BUS;

 BYTE (5 downto 0) <= A_BUS; -- wrong

 Z_BUS (1 downto 0) <= ’0’ & A_BIT;

 Z_BUS <= BYTE (6 downto 3);

 Z_BUS (0 to 1) <= ‘0’ & A_BIT; -- wrong

 A_BIT <= A_BUS (0);

end EXAMPLE;

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Data Types 28 Young Won Lim
06/19/2025

Slices of Arrays

 Slices select elements of arrays

Arrays: Size must match on both sides of an assignment

The direction of the ‘slice” and of the array must match

Notes

The inverse operation of concatenation and aggregation is the selection of slices of arrays, i.e. only a part
of an array is to be used.

The range of the desired array slice is specified in brackets and must match the range declaration of the
signal!

Of course, it is possible to select only single array elements.

https://www.vhdl-online.de/courses/system_design/vhdl_language_and_syntax/data_types

Young Won Lim
06/19/2025

References

[1] http://en.wikipedia.org/
[2] J. V. Spiegel, VHDL Tutorial,

http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
[3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL
[4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems
[5] D. Smith, HDL Chip Design
[6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html
[7] VHDL Tutorial - VHDL onlinewww.vhdl-online.de/tutorial/

http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

