Proof
Recall the general equation for the balance of a physical quantity
![{\displaystyle {\cfrac {d}{dt}}\left[\int _{\Omega }f(\mathbf {x} ,t)~{\text{dV}}\right]=\int _{\partial {\Omega }}f(\mathbf {x} ,t)[u_{n}(\mathbf {x} ,t)-\mathbf {v} (\mathbf {x} ,t)\cdot \mathbf {n} (\mathbf {x} ,t)]~{\text{dA}}+\int _{\partial {\Omega }}g(\mathbf {x} ,t)~{\text{dA}}+\int _{\Omega }h(\mathbf {x} ,t)~{\text{dV}}~.}](../fcb120ab19e9001d85370ccb115c509cec72cf33.svg)
In this case the physical quantity of interest is the momentum density,
i.e.,
. The source of momentum flux
at the surface is the surface traction, i.e.,
. The
source of momentum inside the body is the body force, i.e.,
. Therefore, we have
![{\displaystyle {\cfrac {d}{dt}}\left[\int _{\Omega }\rho ~\mathbf {v} ~{\text{dV}}\right]=\int _{\partial {\Omega }}\rho ~\mathbf {v} [u_{n}-\mathbf {v} \cdot \mathbf {n} ]~{\text{dA}}+\int _{\partial {\Omega }}\mathbf {t} ~{\text{dA}}+\int _{\Omega }\rho ~\mathbf {b} ~{\text{dV}}~.}](../a46f11b5cfa9b04cb07575c7f4e042233fcce4d6.svg)
The surface tractions are related to the Cauchy stress by

Therefore,
![{\displaystyle {\cfrac {d}{dt}}\left[\int _{\Omega }\rho ~\mathbf {v} ~{\text{dV}}\right]=\int _{\partial {\Omega }}\rho ~\mathbf {v} [u_{n}-\mathbf {v} \cdot \mathbf {n} ]~{\text{dA}}+\int _{\partial {\Omega }}{\boldsymbol {\sigma }}\cdot \mathbf {n} ~{\text{dA}}+\int _{\Omega }\rho ~\mathbf {b} ~{\text{dV}}~.}](../adc3ef27ffa5e65209e677c035ea62b0e9cf1bb4.svg)
Let us assume that
is an arbitrary fixed control volume. Then,

Now, from the definition of the tensor product we have (for all vectors
)

Therefore,

Using the divergence theorem

we have
![{\displaystyle \int _{\Omega }{\frac {\partial }{\partial t}}(\rho ~\mathbf {v} )~{\text{dV}}=-\int _{\Omega }{\boldsymbol {\nabla }}\bullet [\rho ~(\mathbf {v} \otimes \mathbf {v} )]~{\text{dV}}+\int _{\Omega }{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}~{\text{dV}}+\int _{\Omega }\rho ~\mathbf {b} ~{\text{dV}}}](../34f59a0faa78bd490f4b097fe1846bee54252d62.svg)
or,
![{\displaystyle \int _{\Omega }\left[{\frac {\partial }{\partial t}}(\rho ~\mathbf {v} )+{\boldsymbol {\nabla }}\bullet [(\rho ~\mathbf {v} )\otimes \mathbf {v} )]-{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} \right]~{\text{dV}}=0~.}](../03c321bc67c81041e73677bfadbe98c206a18988.svg)
Since
is arbitrary, we have
![{\displaystyle {\frac {\partial }{\partial t}}(\rho ~\mathbf {v} )+{\boldsymbol {\nabla }}\bullet [(\rho ~\mathbf {v} )\otimes \mathbf {v} )]-{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} =0~.}](../615dfb89380d7157ae3c429c3eff733eacf30c58.svg)
Using the identity

we get

or,
![{\displaystyle \left[{\frac {\partial \rho }{\partial t}}+\rho ~{\boldsymbol {\nabla }}\bullet \mathbf {v} \right]\mathbf {v} +\rho ~{\frac {\partial \mathbf {v} }{\partial t}}+{\boldsymbol {\nabla }}(\rho ~\mathbf {v} )\cdot \mathbf {v} -{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} =0}](../1c6a6d133032adf207945ec955ca922476fa4de2.svg)
Using the identity

we get
![{\displaystyle \left[{\frac {\partial \rho }{\partial t}}+\rho ~{\boldsymbol {\nabla }}\bullet \mathbf {v} \right]\mathbf {v} +\rho ~{\frac {\partial \mathbf {v} }{\partial t}}+\left[\rho ~{\boldsymbol {\nabla }}\mathbf {v} +\mathbf {v} \otimes ({\boldsymbol {\nabla }}\rho )\right]\cdot \mathbf {v} -{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} =0}](../d8f4634efd67549ed2d10b81b08fc879960a230b.svg)
From the definition

we have
![{\displaystyle [\mathbf {v} \otimes ({\boldsymbol {\nabla }}\rho )]\cdot \mathbf {v} =[\mathbf {v} \cdot ({\boldsymbol {\nabla }}\rho )]~\mathbf {v} ~.}](../d51ffdfa1c0eef65a6d11cc792f7e0c9195e9412.svg)
Hence,
![{\displaystyle \left[{\frac {\partial \rho }{\partial t}}+\rho ~{\boldsymbol {\nabla }}\bullet \mathbf {v} \right]\mathbf {v} +\rho ~{\frac {\partial \mathbf {v} }{\partial t}}+\rho ~{\boldsymbol {\nabla }}\mathbf {v} \cdot \mathbf {v} +[\mathbf {v} \cdot ({\boldsymbol {\nabla }}\rho )]~\mathbf {v} -{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} =0}](../9020d02391b4cbf5edfcfc6c8ab79644a13835de.svg)
or,
![{\displaystyle \left[{\frac {\partial \rho }{\partial t}}+{\boldsymbol {\nabla }}\rho \cdot \mathbf {v} +\rho ~{\boldsymbol {\nabla }}\bullet \mathbf {v} \right]\mathbf {v} +\rho ~{\frac {\partial \mathbf {v} }{\partial t}}+\rho ~{\boldsymbol {\nabla }}\mathbf {v} \cdot \mathbf {v} -{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} =0~.}](../13599a24b1ac883c0ed676882f088c9209f86b41.svg)
The material time derivative of
is defined as

Therefore,
![{\displaystyle \left[{\dot {\rho }}+\rho ~{\boldsymbol {\nabla }}\bullet \mathbf {v} \right]\mathbf {v} +\rho ~{\frac {\partial \mathbf {v} }{\partial t}}+\rho ~{\boldsymbol {\nabla }}\mathbf {v} \cdot \mathbf {v} -{\boldsymbol {\nabla }}\bullet {\boldsymbol {\sigma }}-\rho ~\mathbf {b} =0~.}](../c4484bb80e35493fc3a7c3978fc27e937c0c2aeb.svg)
From the balance of mass, we have

Therefore,

The material time derivative of
is defined as

Hence,
