No license Please help improve the educational quality of this resource to increase engagement by participants. Any concrete improvements made by June 21, 2025 may allow it to be kept.
You may remove {{proposed deletion}} from this resource's source text to contest this proposal, with or without discussion.
The nominator's rationale:
little to learn from here; no introduction; no explanation; no further reading
Link to any subpages this page might have
(
X
n
)
{\displaystyle \left(\mathbb {X} _{n}\right)}
is the
n
t
h
{\displaystyle n^{th}}
composite number.
φ for composite numbers
∀
n
∈
N
∗
{\displaystyle \forall n\in \mathbb {N^{*}} }
1
−
[
[
(
n
−
1
)
!
+
1
n
]
(
n
−
1
)
!
+
1
n
]
=
1
⟺
n
∈
X
{\displaystyle 1-\left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]=1\Longleftrightarrow n\in \mathbb {X} }
1
−
[
[
(
n
−
1
)
!
+
1
n
]
(
n
−
1
)
!
+
1
n
]
=
0
⟺
n
∉
X
{\displaystyle 1-\left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]=0\Longleftrightarrow n\notin \mathbb {X} }
φ
(
n
)
=
1
−
[
[
(
n
−
1
)
!
+
1
n
]
(
n
−
1
)
!
+
1
n
]
{\displaystyle \varphi \left(n\right)=1-\left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]}
φ
(
n
)
=
(
[
[
(
n
!
)
2
n
3
]
(
n
!
)
2
n
3
]
−
[
1
n
]
)
{\displaystyle \varphi \left(n\right)={\left(\left[{\frac {\left[{\frac {\left(n!\right)^{2}}{n^{3}}}\right]}{\frac {\left(n!\right)^{2}}{n^{3}}}}\right]-\left[{\frac {1}{n}}\right]\right)}}
Expresion of (Xn ) according to Lhermite's model
X
n
=
∑
i
=
1
4
m
(
[
1
+
∑
m
=
1
i
φ
(
m
)
n
+
1
]
×
[
n
+
1
1
+
∑
m
=
1
i
φ
(
m
)
]
×
i
×
φ
(
i
)
)
{\displaystyle \mathbb {X} _{n}=\sum _{i=1}^{4m}{\left(\left[{\frac {1+\sum _{m=1}^{i}{\varphi \left(m\right)}}{n+1}}\right]\times \left[{\frac {n+1}{1+\sum _{m=1}^{i}{\varphi \left(m\right)}}}\right]\times i\times \varphi \left(i\right)\right)}}
X
n
=
∑
i
=
1
2
m
+
2
(
[
1
+
∑
m
=
1
i
φ
(
m
)
n
+
1
]
×
[
n
+
1
1
+
∑
m
=
1
i
φ
(
m
)
]
×
i
×
φ
(
i
)
)
{\displaystyle \mathbb {X} _{n}=\sum _{i=1}^{2m+2}{\left(\left[{\frac {1+\sum _{m=1}^{i}{\varphi \left(m\right)}}{n+1}}\right]\times \left[{\frac {n+1}{1+\sum _{m=1}^{i}{\varphi \left(m\right)}}}\right]\times i\times \varphi \left(i\right)\right)}}