Characteristic polynomial/Direct sum decomposition/Fact/Proof
              < Characteristic polynomial < Direct sum decomposition < Fact 
          {{ Mathematical text/Proof |Text= {{ Proofstructure |Strategy= |Notation= |Proof= Let be a basis of and be a basis of ; together they form a basis of . With respect to this basis, is described by the block matrix , where describes the restriction {{mathl|term= \varphi {{|}}_U |pm=}} and describes the restriction {{mathl|term= \varphi {{|}}_W |pm=.}} Then, using exercise, we get {{ Relationchain/display | \chi_{ M } || \det { \left( t \operatorname{Id} -M \right) } || \det { \left( t \operatorname{Id} -A \right) } \det { \left( t \operatorname{Id} -B \right) } || {{op:Characteristic polynomial|\varphi{{|}}_U |}} \cdot {{op:Characteristic polynomial|\varphi{{|}}_W |}} |pm=. }} |Closure= }} |Textform=Proof |Category=See }}