Boolf prop/3-ary/symmetry negperm
< Boolf prop < 3-ary
Number of blocks: 37 Integer partition: 12⋅2 + 12⋅4 + 3⋅8 + 4⋅10 + 6⋅20
| # | symmetry negperm | symmetry negperm indices | block | ||||
|---|---|---|---|---|---|---|---|
| 2 | 1·8 {{0, 1, 2, 3, 4, 5, 6, 7}} ![]() |
|
[0, 255]![]() | ||||
| 10 | 2·3 {{1, 2, 4}, {3, 5, 6}} ![]() |
|
[1, 22, 23, 104, 127, 128, 151, 232, 233, 254]![]() | ||||
| 10 | 2·3 {{0, 3, 5}, {2, 4, 7}} ![]() |
|
[2, 41, 43, 64, 107, 148, 191, 212, 214, 253]![]() | ||||
| 4 | 2·2 + 1·4 {{0, 1}, {2, 3, 4, 5}, {6, 7}} ![]() |
|
[3, 63, 192, 252]![]() | ||||
| 10 | 2·3 {{0, 3, 6}, {1, 4, 7}} ![]() |
|
[4, 32, 73, 77, 109, 146, 178, 182, 223, 251]![]() | ||||
| 4 | 2·2 + 1·4 {{0, 2}, {1, 3, 4, 6}, {5, 7}} ![]() |
|
[5, 95, 160, 250]![]() | ||||
| 8 | 4·2 {{0, 3}, {1, 2}, {4, 7}, {5, 6}} ![]() |
|
[6, 9, 96, 111, 144, 159, 246, 249]![]() | ||||
| 20 | 2·2 {{1, 2}, {5, 6}} ![]() |
|
[7, 14, 25, 30, 31, 103, 110, 112, 118, 120, 135, 137, 143, 145, 152, 224, 225, 230, 241, 248]![]() | ||||
| 10 | 2·3 {{0, 5, 6}, {1, 2, 7}} ![]() |
|
[8, 16, 97, 113, 121, 134, 142, 158, 239, 247]![]() | ||||
| 4 | 2·2 + 1·4 {{0, 2, 5, 7}, {1, 3}, {4, 6}} ![]() |
|
[10, 80, 175, 245]![]() | ||||
| 20 | 2·2 {{0, 3}, {4, 7}} ![]() |
|
[11, 13, 38, 45, 47, 70, 75, 79, 98, 100, 155, 157, 176, 180, 185, 208, 210, 217, 242, 244]![]() | ||||
| 4 | 2·2 + 1·4 {{0, 1, 6, 7}, {2, 3}, {4, 5}} ![]() |
|
[12, 48, 207, 243]![]() | ||||
| 2 | 2·4 {{0, 1, 2, 3}, {4, 5, 6, 7}} ![]() |
|
[15, 240]![]() | ||||
| 4 | 2·2 + 1·4 {{0, 4}, {1, 2, 5, 6}, {3, 7}} ![]() |
|
[17, 119, 136, 238]![]() | ||||
| 8 | 4·2 {{0, 5}, {1, 4}, {2, 7}, {3, 6}} ![]() |
|
[18, 33, 72, 123, 132, 183, 222, 237]![]() | ||||
| 20 | 2·2 {{1, 4}, {3, 6}} ![]() |
|
[19, 37, 50, 54, 55, 76, 91, 94, 108, 122, 133, 147, 161, 164, 179, 200, 201, 205, 218, 236]![]() | ||||
| 8 | 4·2 {{0, 6}, {1, 7}, {2, 4}, {3, 5}} ![]() |
|
[20, 40, 65, 125, 130, 190, 215, 235]![]() | ||||
| 20 | 2·2 {{2, 4}, {3, 5}} ![]() |
|
[21, 42, 61, 62, 67, 84, 86, 87, 106, 124, 131, 149, 168, 169, 171, 188, 193, 194, 213, 234]![]() | ||||
| 2 | 1·2 + 1·6 {{0, 1, 2, 5, 6, 7}, {3, 4}} ![]() |
|
[24, 231]![]() | ||||
| 20 | 2·2 {{0, 5}, {2, 7}} ![]() |
|
[26, 35, 49, 57, 59, 74, 82, 88, 99, 115, 140, 156, 167, 173, 181, 196, 198, 206, 220, 229]![]() | ||||
| 4 | 4·2 {{0, 1}, {2, 5}, {3, 4}, {6, 7}} ![]() |
|
[27, 39, 216, 228]![]() | ||||
| 20 | 2·2 {{0, 6}, {1, 7}} ![]() |
|
[28, 44, 52, 56, 69, 81, 89, 93, 101, 117, 138, 154, 162, 166, 174, 186, 199, 203, 211, 227]![]() | ||||
| 4 | 4·2 {{0, 2}, {1, 6}, {3, 4}, {5, 7}} ![]() |
|
[29, 71, 184, 226]![]() | ||||
| 4 | 2·2 + 1·4 {{0, 3, 4, 7}, {1, 5}, {2, 6}} ![]() |
|
[34, 68, 187, 221]![]() | ||||
| 2 | 1·2 + 1·6 {{0, 1, 3, 4, 6, 7}, {2, 5}} ![]() |
|
[36, 219]![]() | ||||
| 4 | 4·2 {{0, 7}, {1, 3}, {2, 5}, {4, 6}} ![]() |
|
[46, 116, 139, 209]![]() | ||||
| 2 | 2·4 {{0, 1, 4, 5}, {2, 3, 6, 7}} ![]() |
|
[51, 204]![]() | ||||
| 4 | 4·2 {{0, 4}, {1, 6}, {2, 5}, {3, 7}} ![]() |
|
[53, 83, 172, 202]![]() | ||||
| 4 | 4·2 {{0, 7}, {1, 5}, {2, 6}, {3, 4}} ![]() |
|
[58, 92, 163, 197]![]() | ||||
| 2 | 2·4 {{0, 1, 6, 7}, {2, 3, 4, 5}} ![]() |
|
[60, 195]![]() | ||||
| 2 | 1·2 + 1·6 {{0, 2, 3, 4, 5, 7}, {1, 6}} ![]() |
|
[66, 189]![]() | ||||
| 4 | 4·2 {{0, 7}, {1, 6}, {2, 3}, {4, 5}} ![]() |
|
[78, 114, 141, 177]![]() | ||||
| 2 | 2·4 {{0, 2, 4, 6}, {1, 3, 5, 7}} ![]() |
|
[85, 170]![]() | ||||
| 2 | 2·4 {{0, 2, 5, 7}, {1, 3, 4, 6}} ![]() |
|
[90, 165]![]() | ||||
| 2 | 2·4 {{0, 3, 4, 7}, {1, 2, 5, 6}} ![]() |
|
[102, 153]![]() | ||||
| 2 | 2·4 {{0, 3, 5, 6}, {1, 2, 4, 7}} ![]() |
|
[105, 150]![]() | ||||
| 2 | 1·2 + 1·6 {{0, 7}, {1, 2, 3, 4, 5, 6}} ![]() |
|
[126, 129]![]() |




%252C_(3%252C_5%252C_6).svg.png)



%252C_(2%252C_4%252C_7).svg.png)



%252C_(2%252C_3%252C_4%252C_5)%252C_(6%252C_7).svg.png)



%252C_(1%252C_4%252C_7).svg.png)



%252C_(1%252C_3%252C_4%252C_6)%252C_(5%252C_7).svg.png)



%252C_(1%252C_2)%252C_(4%252C_7)%252C_(5%252C_6).svg.png)



%252C_(5%252C_6).svg.png)



%252C_(1%252C_2%252C_7).svg.png)



%252C_(1%252C_3)%252C_(4%252C_6).svg.png)



%252C_(4%252C_7).svg.png)



%252C_(2%252C_3)%252C_(4%252C_5).svg.png)



%252C_(4%252C_5%252C_6%252C_7).svg.png)



%252C_(1%252C_2%252C_5%252C_6)%252C_(3%252C_7).svg.png)



%252C_(1%252C_4)%252C_(2%252C_7)%252C_(3%252C_6).svg.png)



%252C_(3%252C_6).svg.png)



%252C_(1%252C_7)%252C_(2%252C_4)%252C_(3%252C_5).svg.png)



%252C_(3%252C_5).svg.png)



%252C_(3%252C_4).svg.png)



%252C_(2%252C_7).svg.png)



%252C_(2%252C_5)%252C_(3%252C_4)%252C_(6%252C_7).svg.png)



%252C_(1%252C_7).svg.png)



%252C_(1%252C_6)%252C_(3%252C_4)%252C_(5%252C_7).svg.png)



%252C_(1%252C_5)%252C_(2%252C_6).svg.png)



%252C_(2%252C_5).svg.png)



%252C_(1%252C_3)%252C_(2%252C_5)%252C_(4%252C_6).svg.png)



%252C_(2%252C_3%252C_6%252C_7).svg.png)



%252C_(1%252C_6)%252C_(2%252C_5)%252C_(3%252C_7).svg.png)



%252C_(1%252C_5)%252C_(2%252C_6)%252C_(3%252C_4).svg.png)



%252C_(2%252C_3%252C_4%252C_5).svg.png)



%252C_(1%252C_6).svg.png)



%252C_(1%252C_6)%252C_(2%252C_3)%252C_(4%252C_5).svg.png)



%252C_(1%252C_3%252C_5%252C_7).svg.png)



%252C_(1%252C_3%252C_4%252C_6).svg.png)



%252C_(1%252C_2%252C_5%252C_6).svg.png)



%252C_(1%252C_2%252C_4%252C_7).svg.png)



%252C_(1%252C_2%252C_3%252C_4%252C_5%252C_6).svg.png)


