Thumb Instruction Set

Young Won Lim
11/23/24

Copyright (c) 2024 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Thumb Instruction Set 2 Young V1V17235'£2

mailto:youngwlim@hotmail.com

Based on

ARM System-on-Chip Architecture, 2" ed, Steve Furber
Introduction to ARM Cortex-M Microcontrollers
— Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibafnez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Thumb Instruction Set 3 Young \1\52;;2

Thumb Instruction Set

Thumb Instruction Set 4 Young V1V17235'2r2

ARM vs. Thumb programmer’s models

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

ARM state

Thumb Instruction Set

RO
R1
R2
R3
R4
R5
R6
R7

SP
LR
PC

CPSR

Thumb state

ARM state

« 16 + 1 =17 normal registers

Thumb state

e 11 + 1 =12 normal registers

Young Won Lim
11/23/24

ARM Register Sets (2-1)

* The biggest register difference involves the SP register.
* the Thumb state
unique stack mnemonics (PUSH, POP)
* the ARM state.
no such stack mnemonics (PUSH, POP)

e PUSH, POP instructions assume
the existence of a stack pointer (R13)
* PUSH, POP instructions translate

into load and store instructions
in the ARM state.

https://www.embedded.com/introduction-to-arm-thumb/

Thumb Instruction Set 6 Young \1\52352

ARM Register Sets (2-2)

 The CPSR register holds

processor mode bits (user or exception flag) N Negative flag
interrupt mask bits Z Zero flag
condition codes and C Carry flag

V Overflow flag

Thumb status bit
To disable Interrupt (IRQ), set |

* The Thumb status bit (T) indicates To disable Fast Interrupt (FIQ), set F
the processor’s current state:
0 for ARM state (default) USR User mode
1 for Thumb. FIQ Fast Interrupt mode

SVC Supervisor mode
ABT Abort mode

* Although other bits in the CPSR may be modified in UND Undefined mode
software, it's dangerous to write to T directly; SYS System mode
the results of an improper state change are
unpredictable.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 O

N Z CV Il F T mode

https://www.embedded.com/introduction-to-arm-thumb/

Thumb Instruction Set 7 Young V1V1‘3235'2r2

Thumb Instructions

Thumb Instruction Set 8 Young V1V17235'2r2

Thumb Instruction set benefits

* The biggest reason to look for an ARM processor
with the Thumb instruction set is
if you need to reduce code density.

* In addition to reducing the total amount of memory required, you may also be able
to narrow the data bus to just 16 bits.

* With the narrower bus, it will take two bus cycles
to fetch a single 32-bit instruction;

* but you'll only pay that penalty
in the parts of your code
that can’t be implemented
with the Thumb instructions.

* And you'll still have the benefits
of a powerful 32-bit RISC processor.
A nifty trick indeed.

https://www.embedded.com/introduction-to-arm-thumb/

Thumb Instruction Set 9 Young V1V1‘7235'2r2

Thumb instructions (1)

* The Thumb instructions
+ 16-bit instructions
+ a compact shorthand for a subset of
the 32-bit ARM instructions

e every Thumb instruction has
the equivalent 32-bit ARM instruction.

* not every ARM instructions has » for example, there's no way
the equivalent Thumb subset: to access status or coprocessor registers.
+ asingle ARM instruction can only be simulated + along branch with link (BL)
- with a sequence of Thumb instructions * the assembler splits
o | Instruction 1 (H = 0)

Instruction 2 (H = 1)

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

Thumb Instruction Set 10 Young \1\52352

Thumb instructions (2)

* the ARM contains only one instruction set: * The difference between two equivalent instructions
the 32-bit set. (the ARM and Thumb instructions) lies in
* When it's operating in the Thumb state, how the instructions are
fetched and interpreted
the processor simply expands prior to execution,
the smaller shorthand instructions not in how they function.

fetched from memory
* dedicated hardware expands

into their 32-bit equivalents. the 16-bit instruction into 32-bit

it doesn't slow execution even a bit.

* the narrower 16-bit instructions
do offer memory advantages.

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

Thumb Instruction Set 11 Young V1V1‘7235'2r2

Thumb instructions (3)

* Roughly speaking, a CPU instruction is
a particular sequence of bits

* to the CPU, a particular sequence of bits could mean
"add two 32-bit values and carry"

* The exact value of bits in this sequence
has nothing to do with values being added.

* Inthe ARM mode, this sequence of bits has 32 bits.
* In the thumb mode, it only has 16 bits.

« apparently, the thumb mode has less humber
of encoded instructions than the ARM mode
(less bits to encode them),

* for a same function,
most instructions are encoded differently
for the ARM and the thumb modes, respectively,

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

Thumb Instruction Set 12 Young \1\52;;2

Thumb instructions (4)

» for example, the x86 uses 8-bit instructions
but is also able to work on 32 bit values.

* For ARM, the instruction length is what changes
when you switch to/from ARM and thumb modes.

* For example, the instruction MOV RO, R1
copy the contents of the 32-bit R1 register
to the RO register

Is encoded in the following way:

* EIA00001 for ARM (32 bit: 4 bytes)
* 4608 for Thumb (16-bit : 2 bytes)

* But the processor will perform
exactly the same operation, and
it will do it on 32-bit wide data,
whatever the mode.

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

Thumb Instruction Set 13 Young \1\52;;2

Thumb instructions (5)

* The Thumb instruction set is a subset of the most
commonly used 32-bit ARM instructions.

e Thumb instructions are 16 bits long, and
have a corresponding 32-bit ARM instruction
that has the same effect on the processor model.

e Thumb instructions operate
with the standard ARM register configuration,
enabling excellent interoperability
between ARM and Thumb states.

 Thumb has all the advantages of a 32-bit core:

32-bit address space

32-bit registers

32-bit shifter and Arithmetic Logic Unit (ALU)
32-bit memory transfer

https://developer.arm.com/documentation/ddi0333/h/introduction/arm1176jz-s-architecture-with-jazelle-technology/the-thumb-instruction-set

Thumb Instruction Set 1 4 Young \1\52;;2

Thumb instructions (6)

* The ARM processor
can manipulate 32 bit values
because it is a 32-bit processor,
whatever mode it is running in (Thumb or ARM).

* thus, registers are 32 bits wide

* register width doesn't change
when you switch mode (state)

* the data bus width of the processor
has nothing to do with
the length of the instructions.

* The instructions could be encoded in any length.

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

Thumb Instruction Set 1 5 Young V1V17235'£2

Thumb instructions (7)

e The Thumb instruction set provides
most of the functionality of a typical application.

arithmetic and logical operations
load/store data movements
conditional and unconditional branches

e any code written in C could be
executed successfully in Thumb state.

* However, device drivers and exception handlers
must often be written at least partly in ARM state

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

Thumb Instruction Set 16 Young \1\52352

Thumb instructions (8)

* Switching modes allows programmers
to decide on the compromise
between code density and flexibility

e can pack more instructions
in a kB of code with 16-bit instructions,

* Dbut the 32 bit instructions are more flexible
they offer more features and
you can do more with a single instruction

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

Thumb Instruction Set 17 Young V1V17235'£2

Thumb instructions (9)

e All Thumb instructions are 16 bits in length.

* Thumb provides approximately 30% better code density
over ARM code.

* Most code written for Thumb is in a high-level language
such as C and C++,

 ATPCS (ARM Thumb Procedure Call Standard) defines
how ARM and Thumb code call each other,
called ARM-Thumb interworking.

* Interworking uses the branch exchange (BX) instruction

and branch exchange with link (BLX) instruction
to change state and jump to a specific routine.

https://www.sciencedirect.com/topics/computer-science/thumb-instruction-set

Thumb Instruction Set 1 8 Young \1\52352

Thumb instructions (10)

* In Thumb, only the branch instructions
are conditionally executed.

* The barrel shift operations are separate instructions
+ ASR
+ LSL
+ LSR
+ ROR

* The multiple-register load-store instructions
only support the increment after (IA) addressing mode.

e The Thumb instruction set includes POP and PUSH
instructions as stack operations.

 POP and PUSH instructions only support
a full descending stack.

e There are no Thumb instructions

to access the coprocessors, cpsr, and spsr.

https://www.sciencedirect.com/topics/computer-science/thumb-instruction-set

Thumb Instruction Set 19 Young \1\52352

Thumb instructions (11)

ARM Thumb

(CPSR T=0) (CPSR T=1)
Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional execution most only branch instruction
Data Processing access to barrel shifter separate barrel shifter
Instructions and ALU and ALU instructions
Program Status Reg R/W in privileged mode no direct access
Register usage 15 general purpose reg 8 general purpose reg

+ PC + 7 high reg + PC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z2|C|V | | F| T mode

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

Thumb Instruction Set 20 Young \1\52352

Thumb long branch with link BL instruction (1)

THUMB assembler : BL label

H=0
LR := PC + OffsetHigh << 12

H=1
temp := next instruction address
PC := LR + OffsetLow << 1 PC := PC + (OffsetHigh << 12) + (OffsetLow << 1)
LR:=temp|1
H=0 1|1 11-bit Offset_high

H=1 1|1

11-bit Offset _low

23-bit Offset 11-bit Offset_high

11-bit Offset low

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

Thumb Instruction Set 21

Young Won Lim

11/23/24

Thumb long branch with link BL instruction (2)

ARM B or BL instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cond 1/0/1|L 24-bit Offset
Branch PC := Offset

15 14 13 12 117 10 9 8 7 6 5 4 3 2 1 O

Thumb BL instruction 1/1/1/1|H Offset
H=0 1/1(1/1/0 11-bit Offset_high
H=1 1/1/1|11 11-bit Offset _low
23-bit Offset 11-bit Offset_high 11-bit Offset_low 0

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

Thumb Instruction Set 22 Young V1V1‘3235'2r2

Thumb long branch with link BL instruction (3)

Examples
BL faraway ; Unconditionally Branch to ‘faraway"

next ... ; and place following instruction address,
; ie 'next’, in R14, the Link Register (LR)
; and set bit O of LR high (1)
; Note that the THUMB opcodes will contain
: the number of halfwords to offset.

faraway ... ; Must be Half-word aligned.

H=0

LR := PC + OffsetHigh << 12

H=1

temp := next instruction address

PC := LR + OffsetLow << 1 PC := PC + (OffsetHigh << 12) + (OffsetLow << 1)
LR:=temp|1

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

Thumb Instruction Set 23 Young V1V1‘7235'2r2

Thumb long branch with link BL instruction (4)

* This format specifies a long branch with link. * Instruction 2 (H =1)
In the second instruction
* The assembler splits the Offset field contains
the 23-bit two’s complement half-word offset - the lower 11-bit of the target address.
specifed by the label into two 11-bit halves, - this is shifted left by 1 bit and
ignoring bit O (which must be 0), * added to LR.
and creates two THUMB instructions. - LR, which now contains the full 23-bit address,
is placed in PC,
* Instruction 1 (H = 0) the address of the instruction following the BL
In the first instruction is placed in LR and bit O of LR is set.
the Offset field contains - the branch offset must take account of
the upper 11 bits of the target address. the prefetch operation,
this is shifted left by 12 bits and - which causes the PC to be 1 word (4 bytes)
added to the current PC address. ahead of the current instruction

The resulting address is placed in LR.

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf?ref=zdimension.fr

Thumb Instruction Set 2 4 Young V1V1‘3235'2r2

Thumb-2 Instruction

Thumb Instruction Set 25 Young V1V17235'2r2

Thumb-2 Instructions (1)

* Thumb-1 only does 16 bit instructions

e Thumb-2 can do both 16 bit & 32 bit instructions

e Thumb-1 and Thumb-2

* share same architecture for 32 bit data.

* share the same data bus

since only the instruction registers are different.

« for 64 bit processors,
Thumb (T32) can support
both 16 & 32 bit instructions
with some different in each set

in order to conserve code space for some applications

but at the expense of duplicate libraries.

Thumb-1
16-bit
instructions
32-bit GP regs

Thumb-2
Mixed 16- and 32-bit
instructions
32-bit GP regs

T32
Mixed 16- and 32-bit
instructions
32-bit GP regs

A32
32-bit instructions
32-bit GP regs

https://electronics.stackexchange.com/questions/353192/how-does-an-arm-processor-in-thumb-state-execute-32-bit-values

Thumb Instruction Set

26

A64

32-bit instructions
32- and 64-bit GP regs

Young Won Lim

11/23/24

Thumb-2 Instructions (2)

e Thumb-2 is an enhancement
to the 16-bit Thumb instruction set.

e Thumb-2 adds 32-bit instructions

that can be freely intermixed ARM | 32-bit
with 16-bit instructions in a program. Thumb 16-bit
Thumb-2 16-bit 32-bit
* the additional 32-bit instructions 1
enable Thumb-2
added
. . . . 32-bit
* to cover the functionality of the ARM instruction set. Thumb-2

instruction

* to combine the code density of earlier versions of
Thumb, with performance of the ARM instruction.

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

Thumb Instruction Set 27 Young V1V17235'£2

Thumb-2 Instructions (3)

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

The most important difference
between the Thumb-2 instruction set
and the ARM instruction set is

that most 32-bit Thumb instructions are unconditional,
whereas most ARM instructions can be conditional.

Thumb-2 introduces a conditional execution instruction,
IT, that is a logical if-then-else function

that you can apply to following instructions

to make them conditional.

If cond Then ... Else ...

ARM 32-bit
(conditional)

Thumb

(unconditional)
Thumb-2 32-bit

(unconditional) (unconditional)
ITTET EQ ITTET EQ
ADD r0,r0,r0 T EQ + ADD r0,r0,r0
ADD r1,r0,rO T EQ + ADD r1,r0,r0
ADD r2,r0,r0 E EQ + ADD r2,r0,rO
ADD r3,r0,r0 T EQ + ADD r3,r0,r0

ADDEQ r0,r0,r0 (Always if for 1st one)
ADDEQ r1,r0,rO (T for 2nd one)
ADDNE r2,r0,r0 (E for 3rd one)
ADDEQ r3,r0,r0 (T for 4th one)

Thumb Instruction Set 28

Young Won Lim
11/23/24

Thumb-2 Instructions (4)

* Thumb-2 instructions are accessible
as were Thumb instructions
when the processor is in Thumb state,
that is, the T bit in the CPSR is 1 TJ =10
and the J bit in the CPSR is 0.

* In addition to the 32-bit Thumb instructions,
there are several 16-bit Thumb instructions
and a few 32-bit ARM instructions,
introduced as part of the Thumb-2 architecture.

https://en.wikipedia.org/wiki/Jazelle#Implementation

Thumb Instruction Set 29 Young V1V17235'£2

New 32-bit Thumb Instructions (1-1)

* The new 32-bit Thumb instructions are added
in the space previously occupied
by the Thumb BL and BLX instructions.
T3 =10
e This is made possible
by treating BL and BLX as 32-bit instructions,
instead of treating them as two 16-bit instructions.

* This means that BL and BLX, and
all the other 32-bit Thumb instructions,
can only take exceptions on their start address.

* They cannot take exceptions at the boundary
between halfword1 and halfword?2 of the instruction.

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

Thumb Instruction Set 30 Young \1\52;;2

New 32-bit Thumb Instructions (1-2)

* All implementations must ensure
that both halfwords are fetched and consolidated
before they are issued and executed
to comply with this exception event restriction. TJ =10

e This is a change from Thumb.

* Before Thumb-2,
the two halfwords of BL and BLX instructions
execute independently,
and can take exceptions independently.

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

Thumb Instruction Set 3 1 Young \1\52352

New 32-bit Thumb Instructions (2-1)

e The new 32-bit Thumb instructions are designed for:

* the existing ARM/Thumb Programmers' Model,
with as few modifications as possible. TJ =10

» Certain changes are essential
to introduce the 32-bit Thumb instructions, notably
to the Prefetch abort and Undefined Instruction exceptions.

* There is no increase in the number of registers
(general purpose or special purpose registers), and

no increase in register sizes.

 existing compiler code generation techniques,
as far as possible.

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

Thumb Instruction Set 32 Young \1\52;;2

New 32-bit Thumb Instructions (2-2)

* New concepts are supplementary rather than obligatory.

* For example, literals can still be loaded
using PC-relative instructions, or TJ =10
use in-line immediate values embedded
in the MOV 16-bit immediate and MOVT instructions.

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

Thumb Instruction Set 33 Young V1V17235'£2

New 32-bit Thumb Instructions (3)

* You may not need to rewrite too much
depending on what features of the ARM instruction set
and ARM variant you've used.
TJ =10
* It's also possible that your ARM code is
already compatible with Thumb-2.

* ARM created Unified Assembly Language (UAL)
once Thumb-2 was introduced
in order to increase the portability of code.

e itis not a significant deviation
from ARM assembly of olden days,
with the biggest change being the introduction of
the IT(E) directive for conditional execution.

https://developer.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

Thumb Instruction Set 3 4 Young \1\52;;2

New 32-bit Thumb Instructions (4)

* There are some other constructs that won't port directly,
and if you are using features of a more advanced or
complex ARM core that the Cortex-M4 doesn't have,
then that will require a rewrite of that portion. TJ =10

| think if the code is not already written in ARM UAL that,
while it would take time, it would be relatively simple to run
a script over the code that can flag the usage of features
that are not written correctly for UAL.

* A simple regular expression could check for conditionals
on the end of instructions, and it may even be relatively
easy to then convert those constructs to use IT(E) <cond>.

e Ifcond Then ... Else ...

https:/ideveloper.arm.com/documentation/ddi0308/d/Introduction-to-Thumb-2/New-32-bit-Thumb-instructions

Thumb Instruction Set 35 Young V1V1‘3235'2r2

Thumb 2 instruction set (4)

* The main enhancements are:

1. 32-bit instructions added to the Thumb instruction set to:
* provide support for exception handling in Thumb state
* provide access to coprocessors
include Digital Signal Processing (DSP)
and media instructions

2. improve performance in cases
where a single 16-bit instruction restricts
functions available to the compiler.

3. addition of a 16-bit IT instruction

that enables one to four following Thumb instructions,
the IT block, to be conditional

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

Thumb Instruction Set 36 Young \1\52352

Thumb 2 instruction set (5)

* The main enhancements are:

4. addition of a 16-bit CZB instruction
* Compare with Zero and Branch (CZB)
to improve code density by replacing two-instruction
seqguence with a single instruction.

5. The 32-bit ARM Thumb-2 instructions are added

in the space occupied by the Thumb
BL and BLX instructions

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

Thumb Instruction Set 37 Young V1V17235'£2

32-bit ARM Thumb-2 Instruction Format (1)

* The first halfword (hw1l) determines
the instruction length and functionality.

* If the processor decodes the instruction as 32-bit long,
then the processor fetches the second halfword (hw2)
of the instruction from the instruction address plus two.

* The availability of both 16-bit Thumb
and 32-bit instructions in the Thumb-2 instruction sets,
gives you the flexibility to emphasize
performance or code size on a subroutine level,
according to the requirements of their applications.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
hwil hw2

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

Thumb Instruction Set 38 Young \1\52;;2

32-bit ARM Thumb-2 Instruction Format (2)

* For example, you can code critical loops for applications
such as fast interrupts and DSP algorithms
using the 32-bit media instructions in Thumb-2
and use the smaller 16-bit classic Thumb instructions
for the rest of the application.
This is for code density and does not require any mode
change.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond Rn

https://developer.arm.com/documentation/ddi0344/c/programmer-s-model/thumb-2-instruction-set

Thumb Instruction Set 39 Young V1V17235'£2

ARM, Thumb, Thumb 2 instruction encodings (1)

 officially there's no "Thumb-2 instruction set".

* Ignoring ARMv8
* where everything is renamed
and AArch64 complicates things),
* from ARMVAT to ARMv7-A
* there are two instruction sets: ARM and Thumb.

* they are both "32-bit" in the sense that they operate on
* up-to-32-bit-wide data
+ in 32-bit-wide registers
+ with 32-bit addresses.

* In fact, they represent the exact same instructions

 itis only the instruction encoding which differs

* the CPU has two different decode front-ends
to its pipeline which it can switch between.

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 40 Young \1\52;;2

ARM, Thumb, Thumb 2 instruction encodings (2)

 ARM instructions have
 fixed-width 4-byte encodings
* which require 4-byte alignment.

* Thumb instructions have variable-length
+ 2-byte “narrow” encoding
+ 4-byte "wide" encoding

* requiring 2-byte alignment

* most instructions have 2-byte encodings,
* but bl and blx have always had 4-byte encodings*.

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 4 1 Young \1\523%2

ARM, Thumb, Thumb 2 instruction encodings (3)

* The really confusing bit came in ARMv6T2, which

introduced "Thumb-2 Technology". Thumb-2 Technology
4-byte encodings
* Thumb-2 encompassed not just conditional execution
+ adding a load more instructions to Thumb UAL (Unified Assembly Language)
(mostly with 4-byte encodings) unify ARM and Thumb syntaxes
to bring it almost to comparable to ARM, assembling to either ARM or Thumb

+ but also extending the execution state to allow for
conditional execution of most Thumb instructions,

+ and finally introducing a whole new assembly syntax
(UAL, "Unified Assembly Language")

which replaced the previous
separate ARM and Thumb syntaxes

and allowed writing code once and
assembling it to either ARM or Thumb instruction set
without modification.

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 42 Young V1V1‘3235'2r2

ARM, Thumb, Thumb 2 instruction encodings (4)

* The Cortex-M architectures only implement
the Thumb instruction set -

* ARMv7-M (Cortex-M3/M4/M7)
supports most of "Thumb-2 Technology”,
including conditional execution and
encodings for VFP instructions,

* whereas ARMv6-M (Cortex-M0O/MO+)
only uses Thumb-2 in the form of
a handful of 4-byte system instructions.

e Thus, the new 4-byte encodings
(and those added later in ARMv7 revisions)
are still Thumb instructions
* the "Thumb-2" aspect of them is
that they can have 4-byte encodings, and that
they can (mostly) be conditionally executed via it

their menmonics are seemed to be only defined in UAL

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 43 Young \1\52;;2

ARM, Thumb, Thumb 2 instruction encodings (7)

e Thumb: 16 bit instruction set

* ARM: 32 bit wide instruction set hence more flexible
instructions and less code density

e Thumb2 (mixed 16/32 bit):
a compromise between ARM and thumb(16) (mixing
them), to get both performance/flexibility of ARM and
instruction density of Thumb.

* s0 a Thumb2 instruction can be
either an ARM (only a subset of) with 32 bit wide
instruction
or a Thumb instruction with 16 bit wide.

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 4 4 Young \1\52;;2

UAL (Unified Assembly Language) (1-1)

* Unified assembly language (UAL) is
the new assembly syntax introduced by ARM Ltd.
* to handle the ambiguities introduced
by the original Thumb-2 assembly syntax and
e provide similar syntax for ARM, Thumb and Thumb-2.

* UAL is backwards compatible with old ARM assembly,
but incompatible with the Thumb assembly syntax.

* UAL syntax is the default assembly syntax
beginning with ARMv7 architectures.

http://downloads.ti.com/docs/esd/SPNU118/unified-assembly-language-syntax-support-spnul1184444.htmi

Thumb Instruction Set 45 Young V1V1‘7235'2r2

UAL (Unified Assembly Language) (1-2)

* When writing assembly code,
the .arm and .thumb directives are used
to specify ARM and Thumb UAL syntax, respectively.

 The .state32 and .statel6 directives remain
to specify non-UAL ARM and Thumb syntax.

 The .arm and .state32 directives are equivalent
since UAL syntax is backwards compatible in ARM mode.

« Since non-UAL syntax is not supported for Thumb-2
instructions, Thumb-2 instructions cannot be used
inside of a .statel6 section.

* However, assembly code with .statel6 sections that
contain only non-UAL Thumb code can be assembled
for ARMv7 architectures
to allow easy porting of older code.

http://downloads.ti.com/docs/esd/SPNU118/unified-assembly-language-syntax-support-spnul1184444.htmi

Thumb Instruction Set 46 Young V1V1‘3235'2r2

UAL (Unified Assembly Language) (2-1)

* the ARM Unified Assembler Language (UAL) syntax
provides a canonical form for all ARM and Thumb
instructions.

e UAL describes the syntax for the mnemonic and the
operands of each instruction.

* |In addition, it assumes that
Instructions and data items can be given labels.

It does not specify the syntax to be used for labels,
nor what assembler directives and options are available.

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Unified-Assembler-Language

Thumb Instruction Set 47 Young \1\52352

UAL (Unified Assembly Language) (2-2)

* Most earlier ARM assembly language mnemonics
are still supported as synonyms

* Most earlier Thumb assembly language mnemonics are
not supported.

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Unified-Assembler-Language

Thumb Instruction Set 48 Young \1\523%2

UAL (Unified Assembly Language) (3)

* UAL includes instruction selection rules
that specify which instruction encoding is selected
when more than one can provide the required functionality.

* For example, both 16-bit and 32-bit encodings exist
for an ADD RO, R1, R2 instruction.

* The most common instruction selection rule is that
when both 16-bit and 32-bit encodings are available,
the 16-bit encoding is selected, to optimize code density.

e Syntax options exist
to override the normal instruction selection rules and
ensure that a particular encoding is selected.

* These are useful when disassembling code,
to ensure that subsequent assembly produces
the original code, and in some other situations.

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Unified-Assembler-Language

Thumb Instruction Set 49 Young V1V1‘7235'2r2

NEON and VFP

 For armv7 ISA (and variants)

* The NEON is a SIMD and parallel data processing unit
for integer and floating point data

* the VFP is a fully IEEE-754 compatible floating point unit

* In particular on the A8,

the NEON unit is much faster for just about everything,
« even if you don't have highly parallel data,

since the VFP is non-pipelined.

* So why would you ever use the VFP?!

* The most major difference is
that the VFP provides double precision floating point.

e Secondly, there are some specialized instructions
that that VFP offers that there are no equivalent
implementations for in the NEON unit.

* SQRT comes to mind, perhaps some type conversions.

https://stackoverflow.com/questions/4097034/arm-cortex-a8-whats-the-difference-between-vfp-and-neon

Thumb Instruction Set 50 Young V1V1‘7235'2r2

Jezelle DBX (Direct Bytecode Execution)

Thumb Instruction Set 5 1 Young V1V17235'£2

Jazelle (1)

« Jazelle DBX (direct bytecode execution)
Is an extension that allows some ARM processors
to execute Java bytecode in hardware
as a third execution state TJ =10
alongside the existing ARM and Thumb modes.

« Jazelle functionality was specified
in the ARMVTEJ architecture

 the first processor with Jazelle technology
was the ARM926EJ-S.

« Jazelle is denoted by a "J" appended to the CPU name
except for_post-v5 cores where it is required
(albeit only in trivial form) for architecture conformance.

https://en.wikipedia.org/wiki/Jazelle#Implementation

Thumb Instruction Set 52 Young \1\52;;2

Jazelle (2)

e The J bit
* The J bit in the CPSR indicates
when the processor is in Jazelle state.

* WhenJ=0
the processor is in ARM or Thumb state,
depending on the T bit.

TJ=00 ARM
T =10 Thumb

* WhenJ=1 TJ=01 Jazelle
the processor is in Jazelle state. TJ=11 undef

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit

Thumb Instruction Set 53 Young \1\523%2

Jazelle (3)

e The combination of J =1 and T = 1 causes similar effects

to setting T=1 on a non Thumb-aware processor.

* That is, the next instruction executed causes
entry to the Undefined Instruction exception.

e entry to the exception handler
causes the processor to re-enter ARM state, and

* the handler can detect
that this was the cause of the exception

because J and T are both set in SPSR_und.

« MSR cannot be used to change the J bit in the CPSR.

TJ =00
TJ =10
TJ=01
TJ=11

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit

Thumb Instruction Set 54

ARM
Thumb

Jazelle
undef

Young Won Lim
11/23/24

Jazelle (4)

* The placement of the J bit
avoids the status or extension bytes in code
running on ARMVS5TE or earlier processors.

* This ensures that OS code written
using the deprecated syntax
CPSR, SPSR, CPSR_all, or SPSR_all
for the destination of an MSR instruction

continues to work.

e The MSR instruction is used to write

* tothe CPSRor

¢ to the SPSR of the current mode.

flags CPSR_f

31 30 29 28 27 26 25 24
N Z C V QIT[L0] J

status CPSR_s

23 22 21 20 19 18 17 16
GE

extension CPSR_x

15 14 13 12 11 10 9

IT[7:2] E

Current Program Status Register (CPSR)

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit

Thumb Instruction Set

25

8
A

control CPSR_c

Young Won Lim

11/23/24

CPSR Bits (1)

N Negative flag To disable Interrupt (IRQ), set | To disable Interrupt (IRQ), set | USR 10000
Z Zero flag To disable Fast Interrupt (FIQ), set F To disable Fast Interrupt (FIQ), set F FIQ 10001
C Carry flag the T bit shows whether the processor runs the T bit shows whether the processor runs IRQ 10010
V Overflow flag in ARM state or in Thumb state. in ARM state or in Thumb state. SvC 10011
never set this bit never set this bit ABT 10111

can be changed only in a privileged mode can be changed only in a privileged mode UND 11011

SYS 11111

flags CPSR_f status CPSR_s extension CPSR_x control CPSR_c

31 30 29 28 27 26 25 24|23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Il F T mode

Current Program Status Register (CPSR)

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit
https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

Thumb Instruction Set 56 Young V1V1‘7235'2r2

https://developer.arm.com/documentation/ddi0301/h/programmer-s-model/the-program-status-registers/the-j-bit
https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

CPSR Bits (2)

Q Cumulative saturation bit

IT[1:0] if-Then exectuion state bits

for the Thumb IT (If-Then) instruction

J Jazelle bit

31 30 29 28 27 26 25 24
N Z C V QIT[L0] J

Current Program Status Register (CPSR)

GE

greater than or equal to flags

IT[7:2] if-Then exectuion state bits

23 22 21 20 19 18 17 16
GE

for the Thumb IT (If-Then) instruction

15 14 13 12 11 10
IT[7:2]

https://www.keil.com/pack/doc/CMSIS/Core_A/html/group__ CMSIS__ CPSR.html

Thumb Instruction Set

57

9
E

E

A

8
A

Endianness execution state bit
0 - Little-endian, 1 - Big-endian

Asynchronous abort mask bit

Young Won Lim
11/23/24

https://www.keil.com/pack/doc/CMSIS/Core_A/html/group__CMSIS__CPSR.html

MRS — Move to Register from Status

* MRS is use to read
* from the CPSR or
* from the SPRS of the current mode

* It move the value from the status register
into a regular register.

e The SPSR that will be read is
the one that is active for the CPU’s current mode.

MRS RO, CPSR
MRS R1, SPSR

* Reading the SPSR while in user or system mode
is not valid and yields unpredictable results.

https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

Thumb Instruction Set 58 Young \1\52352

MSR — Move to Status from Register

* The MSR instruction is used to write
* tothe CPSR or
* to the SPSR of the current mode.

e Writing to the SPSR while in the user or system mode
is not valid and the results are not predictable.

* Any writes to the CPSR in user mode are ignored.
 The CPSR can only be written to in a priveleged mode.

* MSR CPSR, RO
* MSR SPSR, R1

https://courses.washington.edu/cp105/02_Exceptions/Status_Register_Instructions.html

Thumb Instruction Set 59 Young \1\52352

64-bit Processors

A32 + T32 ISA’s
A64 |SA

Thumb Instruction Set 60 Young V1V17235'£2

64-bit processor (1)

ARMv7-A ARMvS8-A
AARCH 32 AARCH 32 AARCH 64
ARM+Thumb ISAs A32+T32 ISAs A64 ISAs
ARMv7-A ARMvS-A ARMvS-A
AARCH32 AARCH32 AARCH64
ARM+Thumb ISAs A32+T32 ISAs A64 ISAs

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set 6 1 Young \1\523%2

64-bit processor (1)

ARMv7-A

AARCH 32

ARM+Thumb ISAs

ARMvVS-A

AARCH 32

AARCH 64

A32+T32 ISAs

A64 ISAs

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20to%20ARM%2064-bit. pdf

Thumb Instruction Set

62

Young Won Lim

11/23/24

ARM, Thumb, Thumb 2 instruction encodings (5)

* there is a 32-bit execution state (AArch32) and
a 64-bit execution state (AArch64).

* the 32-bit execution state supports
two different instruction sets:
e T32 ("Thumb") and
* A32 ("ARM").

* The 64-bit execution state supports
only one instruction set - A64.

* All A64, like all A32, instructions are
32-bit (4 byte) in size, requiring 4-byte alignment.

* Many/most A64 instructions can operate
on both 32-bit and 64-bit registers
(or arguably 32-bit or 64-bit views
of the same underlying 64-bit register).

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 63 Young \1\52;;2

ARM, Thumb, Thumb 2 instruction encodings (6)

* All ARMvS8 processors (like all ARMv7 processors) that
implement AArch32 support Thumb-2 instructions in the
T32 instruction set.

* Not all ARMv8-A processors implement AAarch32,
and some don't implement AArch64.

e Some Processors support both,
but only support AArch32 at lower exception levels.

https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings

Thumb Instruction Set 6 4 Young \1\52352

64-bit processor (1)

« Evolution of the ARM architecture ARMv7-A
AARCH32
* The diagram shows how all the features present in ARM+Thumb ISAs
ARMv7-A have been carried forward into ARMvS8-A.
_ ARMvVS-A
. Bu;,:RIVl:\;z supports two execution states: AARCH32
. rc
the A32 and T32 instruction sets A32+T321SAs,
AARCH64

(ARM and Thumb in ARMv7-A) are supported
- AArché4 A64ISAs

the new A64 instruction set is introduced.

e Although backwards compatible with ARMv7-A,
the exception, privilege and security model
has been significantly extended and
Is now classified as a set of exception levels,
ELO to EL3, in a four-level hierarchy.

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set 65 Young V1V1‘7235'2r2

64-bit processor (2)

* In AArch32, ARMv7-A
the ARMv7-A Large Physical Address Extensions AARCH32
are supported, providing ARM+Thumb ISAs
e 32-bit virtual addressing and
* 40-bit physical addressing. ARMVS-A

AARCH32,

* In AArchéd, . | A32+T32 ISAS,
this is extended, again in a backward compatible way,
to provide AARCH64
 64-bit virtual addresses and A64 ISAs

 48-bit physical address

* Other additions include cryptographic support
at instruction level.

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set 66 Young V1V17235'£2

64-bit processor (3)

« Overview of AArch64 in ARMvS-A ARMvV7-A
AARCH32
* The A64 instruction set, defined in AArch64, ARM+Thumb ISAs
has been designed from the ground up
as a clean, modern instruction set which operates ARMVS-A
on 64-bit or 32-bit native datatypes or registers. AARCH32,
+
» A64 is a fixed-length instruction set A32+T32 ISAs,
in which all instructions are 32 bits in length. AARCH64
A64 ISAs
* |t does, as you might expect, have many similarities
with the A32 instruction set which you’ll be familiar with
from earlier ARM architectures.
* There are some things you'll find which are new and
some things which you'll go looking for and aren’t there!
https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf
Thumb Instruction Set 67 Young Won Lim
11/23/24

64-bit processor (4)

AARCH32 execution state AARCHG4 execution state

T32

Mixed 16- and 32-bit Exception
instructions Entry

32-bit GP regs

A A

BX Exception -
BLX Entry or

A64
32-bit instructions

MOV PC Exception :
LDR PC Return - 32- and 64-bit GP regs
\ \
A32
32-bit instructions .
: Exception
32-bit GP regs Return

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set 68 Young V1V1‘3235'2r2

64-bit processor (5)

AARCH32 execution state

Thumb
16-bit
instructions
32-bit GP regs

A

y

ARM
32-bit instructions
32-bit GP regs

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set 69 Young \1\523%2

64-bit processor (6)

Changing Execution state and Instruction set

* A fully-populated ARMv8-A processor

supports both AArch32 and
Aarch64 execution states.

Transition between the two is
always across an exception boundary.

This differs from ARMv7-A

in which a change of instruction set is triggered
by an interworking branch (e.g. BLX).

AARCH32 execution state

T32
Mixed 16- and 32-bit
instructions
32-bit GP regs

A A
BX Exception
BLX Entry or
MOV PC Exception
LDR PC Return
A Y
A32

32-bit instructions
32-bit GP regs

AARCH32 execution state

Thumb
16-bit
instructions
32-bit GP regs

4

BX

BLX
MOV PC
LDR PC

y

ARM
32-bit instructions
32-bit GP regs

AARCHG64 execution state

Exception
Entry

Exception
Return

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set

A64
32-bit instructions
32- and 64-bit GP regs

Young Won Lim
11/23/24

64-bit processor (7)

Changing Execution state and Instruction set

* the relationship between
the T32, A32 and A64 instruction sets and
* the events which can cause a switch between them.

e the execution state

~ can stay the same or

> go from 32-bit to 64-bit
when taking an exception, or
when returning from an exception

* This introduces a natural hierarchy
of 64-bit and 32-bit support at each level

ARMvS8-A
AARCH32
A32+T32 ISAs

ARMvS-A
AARCH64
A64 ISAs

AARCH32 execution state

T32
Mixed 16- and 32-bit
instructions
32-bit GP regs
A A

BX

BLX
MOV PC
LDR PC

Exception
Entry or
Return

Y A J

A32
32-bit instructions
32-bit GP regs

AARCHG64 execution state

Exception
Entry
= A64
32-bit instructions
- 32- and 64-bit GP regs

Exception
Return

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/Porting%20t0%20ARM%2064-bit. pdf

Thumb Instruction Set 71

ARMV?fdﬁng Won Lim
AARCH32 11/23/24

ARM+Thumb ISAs

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial C

[2] http://blog.bobuhiroll.net/2014/01-13-baremetal.html

[3] http://www.valvers.com/open-software/raspberry-pi/

[4] https://lwww.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

Thumb Instruction Set 72 Young \1\523%2

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

