
Young Won Lim
8/18/23

Nesting, Tail Chaining, and Late Arrival

Nesting, Tail Chaining, and
Late Arrival

2 Young Won Lim
8/18/23

 Copyright (c) 2023 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Nesting, Tail Chaining, and
Late Arrival

3 Young Won Lim
8/18/23

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Nesting, Tail Chaining, and
Late Arrival

4 Young Won Lim
8/18/23

Nesting, Tail Chaining, and Late Arrival

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● preemption
interrupts the context
by pushing registers onto a stack
and popping them later
to return to the interrupted context

● tail-chaining
allows additional handlers to be executed
without additional pushing and popping of registers.

consider a diagram
priority on the vertical axis
time on the horizontal.

Nesting, Tail Chaining, and
Late Arrival

5 Young Won Lim
8/18/23

Nesting (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2 push ISR1 pop ISR2 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2 ISR2

Core execution

Higher priority
● a thread
● two interrupt, (IRQ1 has a higher priority than IRQ2)

IRQ1 preempts IRQ2
IRQ2 has a lower priority

IRQ2 IRQ1

Nesting, Tail Chaining, and
Late Arrival

6 Young Won Lim
8/18/23

Nesting (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● at some point IRQ2 is requested and
the thread is immediately preempted
by pushing it onto the stack,
and start running the ISR2

foreground push ISR2 push ISR1 pop ISR2 pop foreground

IRQ1 preempts IRQ2

● When ISR2 completes,
we pop back to the thread.

● initially, the thread is running at base priority level.

● while ISR2 is active, IRQ1 requests
since IRQ1 has a higher priority than IRQ2,
ISR2 is also preempted
and pushed onto the stack,
and ISR1 is executed.

● when ISR1 completes, we pop back
to the next highest priority ISR2.

Nesting, Tail Chaining, and
Late Arrival

7 Young Won Lim
8/18/23

Nesting (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● The benefit
- distinct levels of priority
- always working on the most important task
- minimize the interrupt latency

for the highest priority interrupt at any time.

● The cost
- a few cycles performing housekeeping (push, pop)
 around the interrupts.

● creating multiple stack frames
increases the need for stack memory
consumes energy for several memory cycles

push push pop pop

Stack frame
For ISR1

Stack frame
For ISR2

increasing stack

Nesting, Tail Chaining, and
Late Arrival

8 Young Won Lim
8/18/23

Tail chaining (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground TC ISR2push ISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

pushpop ISR2 pop foreground

IRQ1 IRQ2

IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

IRQ2 must wait
ISR2 is served after ISR1

Nesting, Tail Chaining, and
Late Arrival

9 Young Won Lim
8/18/23

push ISR1

Tail chaining (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● At the end of ISR1,
the NVIC then arbitrates to IRQ2 and runs ISR2
simply by reading the vector table again and
branching to that address.

● Only when ISR2 is completed
and there are no other pending interrupts,
the stack popped to return to the thread.

foreground TC ISR2push ISR1 pop foreground

pushpop ISR2 pop foreground

● Priority (IRQ2) ≤ Priority (IRQ1)
thus IRQ2 cannot preempt IRQ1.

● IRQ1 preempts the thread with a stack push.
● while ISR1 runs, IRQ2 occurs,

● IRQ2 remains pending
● ISR1 runs to completion

IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

read the vector table again
branch to ISR2 address

IRQ1 IRQ2

IRQ2 must wait
ISR2 is served after ISR1

Nesting, Tail Chaining, and
Late Arrival

10 Young Won Lim
8/18/23

Tail chaining (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● At the end of ISR1, (tail chaining)
the NVIC then arbitrates to IRQ2 and runs ISR2
simply by reading the vector table again and
branching to that address.

foreground TC ISR2push ISR1 pop foreground

● Priority (IRQ2) ≤ Priority (IRQ1)
thus IRQ2 cannot preempt IRQ1.

● In this case, there was less control of interrupt latency.
● cannot preempt, must wait

● as any lower or equal priority interrupt
that occurred while another interrupt was active,
would have to wait for that active ISR to complete.

read the vector table again
branch to ISR2 address

IRQ1 IRQ2
IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

IRQ2 must wait
ISR2 is served after ISR1

Nesting, Tail Chaining, and
Late Arrival

11 Young Won Lim
8/18/23

Tail chaining (4)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground TC ISR2push ISR1 pop foreground

pushpop ISR2 pop foreground

to perform the housekeeping between interrupts
● fewer cycles were spent
● less energy used
● less memory space used

these lead to
● better overall throughput
● lower power
● smaller memory requirements

IRQ1 IRQ2

read the vector table again
branch to ISR2 address

IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

IRQ2 must wait
ISR2 is served after ISR1

Nesting, Tail Chaining, and
Late Arrival

12 Young Won Lim
8/18/23

Tail chaining (5)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● ARM recommends programming interrupts into
as few priority levels as needed,
and therefore, using tail-chaining as widely as possible
to take advantage of these benefits.

ISR4 ISR3 ISR2 ISR1

ISR4 ISR3 ISR2 ISR1

ISR4 ISR3 ISR2 ISR1 ISR2 ISR3 ISR4

Priority (IRQ4)
< Priority (IRQ3)
< Priority (IRQ2)
< Priority (IRQ1)
4 distinct priority levels

Priority (IRQ4)
= Priority (IRQ3)
= Priority (IRQ2)
= Priority (IRQ1)
the same priority level

IRQ4 IRQ3 IRQ2 IRQ1

IRQ4 IRQ3 IRQ2 IRQ1

Nesting, Tail Chaining, and
Late Arrival

13 Young Won Lim
8/18/23

Late arrival A (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2TCISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

IRQ1 is handled even after
IRQ2’s entry sequence has started

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

IRQ2 IRQ1

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

Nesting, Tail Chaining, and
Late Arrival

14 Young Won Lim
8/18/23

Late arrival A (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● a higher priority exception is handled
before a lower priority exception

● just after the entry sequence of
a lower priority exception has started

● the lower priority exception is handled
after the higher priority exception is completed

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

Nesting, Tail Chaining, and
Late Arrival

15 Young Won Lim
8/18/23

Late arrival A (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

● also, in the case of the late-arriving interrupt,
the processor might execute its ISR
after fewer cycles of interrupt latency.

● a lower priority IRQ2 interrupt causes
the interrupt entry sequence to start.

● the interrupted context has its registers
pushed onto the stack.

● while this is happening,
a higher priority IRQ1 interrupt occurs

● The processor still has to read
the vector table to get the new vector

● but does not need to restart the stack push,
so some cycles may be saved.

IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

Nesting, Tail Chaining, and
Late Arrival

16 Young Won Lim
8/18/23

Late arrival B (1-1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2TCISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

IRQ1 IRQ2

IRQ2 cannot preempt IRQ1
IRQ2 has a lower priority

end of ISR1

IRQ2 must wait
ISR2 is served after ISR1

Nesting, Tail Chaining, and
Late Arrival

17 Young Won Lim
8/18/23

Late arrival B (1-2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2 TC ISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

push ISR1pop foregroundpush pop

IRQ2 IRQ2 IRQ1 IRQ1

ISR2

IRQ2 IRQ1

IRQ1 does not preempt IRQ2
IRQ2 has a lower priority

just at the end of ISR2

IRQ1 waits
ISR1 is served after ISR2

Nesting, Tail Chaining, and
Late Arrival

18 Young Won Lim
8/18/23

Late arrival B (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● A similar case arises
if a new interrupt ISR2 arrives
just before the end of an ISR1,

● Priority (IRQ2) < Priority (IRQ1)
● Priority (IRQ2) > any other pending or active ISR

● so that the newly detected interrupt
immediately becomes the next interrupt
to be handled in priority order.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ1

push ISR1 pop foregroundpush pop

IRQ1 IRQ2IRQ1 IRQ2

ISR2

IRQ2

● Again, the vector table needs to be read
to access the new ISR1,
but tail-chaining does not require
any stacking operation

● The interrupt latency could be
lower than normal.

end of ISR1

Nesting, Tail Chaining, and
Late Arrival

19 Young Won Lim
8/18/23

Late arrival C (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2 TC ISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

IRQ2 IRQ2

push ISR2 ISR1pop foregroundpush pop

IRQ2 IRQ2 IRQ1 IRQ1

pop

IRQ1 occurs just
at the IRQ2’s exit sequence

IRQ1 does not preempt IRQ2
IRQ1 can abort IRQ2’s exit sequence

Nesting, Tail Chaining, and
Late Arrival

20 Young Won Lim
8/18/23

Late arrival C (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● In the case where
the exception exit has already started,
a similar situation arises.

● In the traditional model,
the stack pop would have to complete,
and then those same registers
would need to be pushed again
as part of the new exception handler.

pop push
Traditional Interrupt handling
Must complete stack cycle

pop TCARMv8-M processor may abandon
stack operation dynamically

push

push

IRQ1 IRQ2IRQ1

IRQ1 IRQ1

pop

pop

IRQ2

IRQ2

● In Cortex M,
the stack pop can simply be abandoned,
leaving the stack frame on the stack,
and only a tail-chain is then needed
to enter the new ISR.

Nesting, Tail Chaining, and
Late Arrival

21 Young Won Lim
8/18/23

Late arrival C (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● ARM7TDMI
● Load Multiple uninterruptible and hence
● The core must complete
● The POP and then full stack PUSH

pop push
Traditional Interrupt handling
Must complete stack cycle

pop TCARMv8-M processor may abandon
stack operation dynamically

push

push

IRQ1 IRQ2IRQ1

IRQ1 IRQ1

● ARMv8-M Processor
● POP may be abandoned early
● if another Interrupt arrives
● If POP is interrupted,
● the new handler can be fetched directly

pop

pop

IRQ2

IRQ2

Nesting, Tail Chaining, and
Late Arrival

22 Young Won Lim
8/18/23

Late arrival C (4)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

IRQ1

IRQ2

Base CPU

Higher priority

pop TCARMv8-M processor may abandon
stack operation dynamically

push

IRQ1 IRQ1

pop push
Traditional Interrupt handling
Must complete stack cycle push

IRQ1 IRQ2IRQ1

Nesting, Tail Chaining, and
Late Arrival

23 Young Won Lim
8/18/23

Nesting, Tail Chaining, and Late Arrival (2)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● The ARM-Architecture Reference Manual mentions
three design options that can be implemented for CortexM.

● In the Instruction Set Attribute Register 2 (ID_ISAR2), bits[11:8]:

● None supported.
This means the LDM and STM instructions are
not interruptible. ARMv7-M reserved.

● LDM and STM instructions are restartable.
●

● LDM and STM instructions are continuable.

Nesting, Tail Chaining, and
Late Arrival

24 Young Won Lim
8/18/23

Late Arrival (1)

https://developer.arm.com/documentation/ka001190/latest

● A late-arriving interrupt is an interrupt which is
recognized after the processor has started
its exception entry procedure.

● If the late-arriving interrupt has
higher pre-empting priority
than the exception which the processor
has already started to handle,
then the existing stack push will continue
but the vector fetch will be re-started
using the vector for the late-arriving interrupt.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

after starting an exception entry,
other interrupts are requested

current stack operation – utilized

current vector fetch – not used
abandoned,
restarted

Late Arrival IRQ1
– pre-empting

Nesting, Tail Chaining, and
Late Arrival

25 Young Won Lim
8/18/23

Late Arrival (2)

https://developer.arm.com/documentation/ka001190/latest

● This guarantees that the interrupt
with the highest pre-empting priority
will be serviced first,
but in some circumstances
this results in some wasted cycles
from the original vector fetch
which was abandoned.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

after starting an exception entry,
other interrupts are requested

current stack operation – utilized

current vector fetch – not used
abandoned,
restarted

→ wasted cycles

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

Late Arrival IRQ1
– pre-empting

Nesting, Tail Chaining, and
Late Arrival

26 Young Won Lim
8/18/23

Late Arrival (3)

https://developer.arm.com/documentation/ka001190/latest

● If the late-arriving interrupt
has only equal priority to (or lower priority than)
the exception which the processor
has already started to handle,
then the late-arriving interrupt
will remain pending until
after the exception handler
for the current exception has run

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ1 IRQ2

push ISR1 pop foregroundpush pop

IRQ1 IRQ2IRQ1 IRQ2

ISR2

IRQ2

Pending IRQ2
Wait

IRQ2 cannot preempts IRQ1
IRQ2 has a lower priority

Exception entry

Late Arrival IRQ2
– pending

Nesting, Tail Chaining, and
Late Arrival

27 Young Won Lim
8/18/23

Late Arrival (4)

https://developer.arm.com/documentation/ka001190/latest

● This is because the late-arriving behaviour
is classed as a pre-empting behaviour, and
is therefore dependent only
upon the pre-empting priority levels
of the interrupts and exceptions.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ1 IRQ2IRQ2

Pending IRQ2
Wait

IRQ2 cannot preempts IRQ1
IRQ2 has a lower priority

Exception entry

Late Arrival IRQ1
– pre-empting

Late Arrival IRQ2
– pending

Nesting, Tail Chaining, and
Late Arrival

28 Young Won Lim
8/18/23

Late Arrival (5)

https://developer.arm.com/documentation/ka001190/latest

● Because the stack push has already been initiated,
the interrupt latency

(meaning the number of cycles
between the arrival of the interrupt request and
execution of the first instruction of its handler)

might be less than the standard interrupt latency
for the particular processor and system.

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

push ISR1 pop foregroundpush pop

IRQ1 IRQ2IRQ1 IRQ2

ISR2

Late Arrival IRQ1
– pre-empting

Late Arrival IRQ2
– pending

Standard Stack Operations

Nesting, Tail Chaining, and
Late Arrival

29 Young Won Lim
8/18/23

Late Arrival (6)

https://developer.arm.com/documentation/ka001190/latest

● Some (but not all) Cortex-M processors provide
an implementation-time option for the chip designer
to specify a minimum value for the interrupt latency,
reducing or removing the uncertainty in interrupt latency
by adding stall cycles in such cases.

● Documentation of the specific chip
should provide details of this setting, if applicable.

Interrupt latency > min value

min value
: set at the implementation time

add stall cycles
to small interrupt latency
to meet the min value

Nesting, Tail Chaining, and
Late Arrival

30 Young Won Lim
8/18/23

Single copy atomicity in ARM (1)

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

● a read or write operation is single-copy atomic
if the following conditions are both true:

● after any number of write operations to a memory location,
the value of the memory location is
the value written by one of the write operations.

● It is impossible for part of the value of the memory location
to come from one write operation
and another part of the value to come
from a different write operation

Nesting, Tail Chaining, and
Late Arrival

31 Young Won Lim
8/18/23

Single copy atomicity in ARM (2)

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

● When a read operation and a write operation
are made to the same memory location,
the value obtained by the read operation is one of:

● the value of the memory location
before the write operation

● the value of the memory location
after the write operation.

● It is never the case that
the value of the read operation is
partly the value of the memory location
before the write operation
and partly the value of the memory location
after the write operation.

Nesting, Tail Chaining, and
Late Arrival

32 Young Won Lim
8/18/23

Single copy atomicity in ARM (3)

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

● So your understanding is right - the defining point of a
single-copy atomic operation is that at any given time you
can only ever see either all of it, or none of it.

●

● There is a case in v7 whereby (if I'm interpreting it right)
two normally single-copy atomic stores that occur to the
same location at the same time but with different sizes
break any guarantee of atomicity, so in theory you could
observe some unexpected mix of bytes there - this looks
to have been removed in v8.

Nesting, Tail Chaining, and
Late Arrival

33 Young Won Lim
8/18/23

Interruptible LDM, STM (1)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● the load multiple (LDM) instructions are
explicitly not atomic.

● section A3.5.3 of the ARM V7C
architecture reference manual.

● LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD,
PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR
instructions

● are executed as a sequence of
word-aligned word accesses.

● each 32-bit word access is guaranteed
to be single-copy atomic.

● the architecture does not require
subsequences of two or more word accesses
from the sequence to be single-copy atomic.

●

Nesting, Tail Chaining, and
Late Arrival

34 Young Won Lim
8/18/23

Interruptible LDM, STM (2)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● the LDM/STM instructions
can be aborted by an interrupt
and restarted from the beginning on interrupt return

● LDM and STM instructions
can always be interrupted by a data abort,
so they're non atomic in that sense.

● Otherwise, the ARMv7-A architecture
does its best to help you out.

● for interrupts, they can only be interrupted
● if low interrupt latency is enabled,
● AND normal memory is being accessed.

● So at the very least, you won't get
repeated accesses to device memory.

● You don't want to do anything
that expects atomic read/writes of normal memory
though.

Nesting, Tail Chaining, and
Late Arrival

35 Young Won Lim
8/18/23

Interruptible LDM, STM (3)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● On v7-M, LDM and STM can be interrupted at any time

● see section B1.5.10 of the ARMv7-M Architecture
Reference Manual

● It's implementation defined
● whether or not the instruction is restarted from the

beginning of the list of loads/stores,
● or whether it's restarted from where it left off.
●

●

●

Nesting, Tail Chaining, and
Late Arrival

36 Young Won Lim
8/18/23

Interruptible LDM, STM (4)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● As the ARM says:

● The ARMv7-M architecture supports
● continuation of, or
● restarting from the beginning,

● an abandoned LDM or STM instruction
as outlined below.

● Where an LDM or STM is abandoned and restarted
(ICI bits are not supported),

● the instructions should not be used with volatile memory.

● In other words, don't rely on LDM or STM being atomic
if you're trying to write portable code.

Nesting, Tail Chaining, and
Late Arrival

37 Young Won Lim
8/18/23

Nesting, Tail Chaining, and
Late Arrival

38 Young Won Lim
8/18/23

Interruptible LDM, STM (6)

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● Application Program Status Register (APSR)

● The APSR contains the current state of the condition
flags from previous instruction executions.

● Interrupt Program Status Register (IPSR)

● The IPSR contains the exception type number of the
current Interrupt Service Routine (ISR)

● Execution Program Status Register (EPSR)

● The EPSR contains
● the thumb state bit, and
● the execution state bits

● for either the:
● If-Then (IT) instruction
● Interruptible-Continuable Instruction (ICI) field

for an interrupted load multiple or store multiple
instruction.

Nesting, Tail Chaining, and
Late Arrival

39 Young Won Lim
8/18/23

If-Then (IT) block

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● The If-Then (IT) block contains
up to four instructions following an IT instruction

● each instruction in the block is conditional.

● the conditions for the instructions are
● either all the same, or Then
● some can be the inverse of others. Else

ITTET EQ
ADD r0,r0,r0
ADD r1,r0,r0
ADD r2,r0,r0
ADD r3,r0,r0

IT block size = 4

Nesting, Tail Chaining, and
Late Arrival

40 Young Won Lim
8/18/23

If-Then (IT) block examples

https://stackoverflow.com/questions/36558926/what-does-the-arm7-it-if-then-instruction-really-do

First note that most instruction can specify a condition code
in ARM instruction, not in Thumb.

With IT instruction, you can specify condition code for up to 4 instructions.
For each instruction, you specify if it's part of the If (T) or Else (E).

For example:

ITTET EQ Then, Then, Else, Then → EQ, EQ, NE, EQ
ADD r0,r0,r0
ADD r1,r0,r0
ADD r2,r0,r0
ADD r3,r0,r0

Will actually translate to:

ADDEQ r0,r0,r0 (Always if for 1st one)
ADDEQ r1,r0,r0 (T for 2nd one)
ADDNE r2,r0,r0 (E for 3rd one)
ADDEQ r3,r0,r0 (T for 4th one)

Nesting, Tail Chaining, and
Late Arrival

41 Young Won Lim
8/18/23

Condition Code Encoding

http://www.csbio.unc.edu/mcmillan/Media/arm-instructionset.pdf

Code Suffix Flags Meaning
0 0 0 0 EQ Z set equal
0 0 0 1 NE Z clear not equal
0 0 1 0 CS C set unsigned higher or same
0 0 1 1 CC C clear unsigned lower
0 1 0 0 MI N set negative
0 1 0 1 PL N clear positive or zero
0 1 1 0 VS V set overflow
0 1 1 1 VC V clear no overflow
1 0 0 0 HI C set and Z clear unsigned higher
1 0 0 1 LS C clear or Z set unsigned lower or same
1 0 1 0 GE N equals V greater or equal
1 0 1 1 LT N not equal to V less than
1 1 0 0 GT Z clear AND (N equals V) greater than
1 1 0 1 LE Z set OR (N not equal to V) less than or equal
1 1 1 0 AL (ignored) always
1 1 1 1 rsvd

base condition

P1, P2, P3, P4

Nesting, Tail Chaining, and
Late Arrival

42 Young Won Lim
8/18/23

ESPR fields for IT block (1)

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

– ICI/IT T – ICI/IT –

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IT[1:0] IT[7:4]

1 0 7 6 5 4 3 2

IT[3:2]

7 6 5 4 3 2 1 0

IT[7:5] IT[4:0]

 IT[7:5] holds the base condition for the current IT block.
The base condition is the top 3 bits of the condition
specified by the IT instruction.
This subfield is 0b000 when no IT block is active.

IT[4:0] encodes the size of the IT block.
encodes the value of the least significant bit
of the condition code for each instruction in the block.
(P1, P2, P3, P4)

base
condition

IT block size
lsb of condition code

Nesting, Tail Chaining, and
Late Arrival

43 Young Won Lim
8/18/23

ESPR fields for IT block (2)

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

7 6 5 4 3 2 1 0

IT[7:5] IT[4:0]

IT[4:0] encodes the size of the IT block.
This is the number of instructions
that are to be conditionally executed.
The size of the block is implied by the position
of the least significant 1 in this field

encodes the value of the least significant bit
of the condition code for each instruction in the block.
(P1, P2, P3, P4)

[7:5] [4] [3] [2] [1] [0]
cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block
cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block
cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block
cond_base P1 1 0 0 0 Entry point for 1-instruction IT block
000 0 0 0 0 0 Normal execution, not in an IT block

ITTET EQ
ADD r0,r0,r0
ADD r1,r0,r0
ADD r2,r0,r0
ADD r3,r0,r0

IT block size = 4

Nesting, Tail Chaining, and
Late Arrival

44 Young Won Lim
8/18/23

ESPR fields for IT block (3)

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

7 6 5 4 3 2 1 0

IT[7:5] IT[4:0]

[7:5] [4] [3] [2] [1] [0]
cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block
cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block
cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block
cond_base P1 1 0 0 0 Entry point for 1-instruction IT block
000 0 0 0 0 0 Normal execution, not in an IT block

EQ condition code = 0000 base code = 000
NE condition codc = 0001 P1=0, P2=0, P3=1, P4=0 TTET

IT[7:5] = 000, IT[4:0] = 00101

ITTET EQ
ADD r0,r0,r0
ADD r1,r0,r0
ADD r2,r0,r0
ADD r3,r0,r0

ADDEQ r0,r0,r0 (Always if for 1st one)
ADDEQ r1,r0,r0 (T for 2nd one)
ADDNE r2,r0,r0 (E for 3rd one)
ADDEQ r3,r0,r0 (T for 4th one)

Nesting, Tail Chaining, and
Late Arrival

45 Young Won Lim
8/18/23

Interruptible-Continuable Instructions (ICI)

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● When an interrupt occurs during the execution of
an LDM, STM, PUSH, or POP instruction,
the processor:

● stops the load multiple or store multiple instruction
operation temporarily

● stores the next register operand in the multiple
operation to EPSR bits[15:12].

● after servicing the interrupt, the processor:

● returns to the register pointed to by EPSR bits[15:12]

● resumes execution of the multiple load or store
instruction.

– ICI/IT T – ICI/IT –

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6

0 0 0 0

● When the EPSR holds ICI execution state
bits[26:25,11:10] are zero.

Nesting, Tail Chaining, and
Late Arrival

46 Young Won Lim
8/18/23

0 0 0 0

ESPR fields for ICI bits (1)

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

– ICI/IT T – ICI/IT –

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Register
number

0 00 0

ICI[5:2] 0 00 0

When an interrupt occurs during an LDM or STM operation,
the multiple operation stops temporarily.

The EPSR uses bits [15:12] to store the number of
the next register operand in the multiple operation.

After servicing the interrupt, the processor returns
to the register pointed to by [15:12] and
resumes the multiple operation.

If the ICI field [5:2] points to a register that is
not in the register list of the instruction, the processor
continues with the next register in the list, if any.

ESPR [15:12]

ICI [5:2]

Nesting, Tail Chaining, and
Late Arrival

47 Young Won Lim
8/18/23

LDM / STM examples (1)

http://www.cburch.com/books/arm/

allowing several values to be loaded or stored

For example, LDMIA instruction allows
loading into multiple registers (R5, R6, R7, R8)
starting at an address named in another register (R0).

Consider the example of adding the integers of an array.
LDMIA can be used to processes four integers with each
iteration of the loop.
In this way, fewer instructions can be used,
at the expense of more complexity.

LDMIA R0!, { R5-R8 }

R0

R4 = 0

R1= 4*4

R5
R6
R7
R8

Nesting, Tail Chaining, and
Late Arrival

48 Young Won Lim
8/18/23

LDM / STM examples (2)

http://www.cburch.com/books/arm/

R0

R4 = 0

R1= 4*4

R5
R6
R7
R8

equivalent instructions without !
pre-indexed

LDR R5, =[R0, #0]
LDR R6, =[R0, #4]
LDR R7, =[R0, #8]
LDR R8, =[R0, #12]
ADD R0, R0, #12

equivalent instructions with !
post-indexed

LDR R5, =[R0], #4
LDR R6, =[R0], #4
LDR R7, =[R0], #4
LDR R8, =[R0], #4

If the exclamation mark ! following R0 is omitted,
then the address register R0 is not altered
R0 would continue pointing to the first integer in the array.

we want R0 to change so that it is pointing
to the next four integers for the next iteration,
the exclamation point should be included

LDMIA R0!, { R5-R8 }

Nesting, Tail Chaining, and
Late Arrival

49 Young Won Lim
8/18/23

LDM / STM examples (3)

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Assume an interrupt happens in the middle of
LDR R6 =[R0], #4 operation

When an interrupt occurs during an LDM or STM operation,
the multiple operation stops temporarily.

LDR R5 =[R0], #4
LDR R6 =[R0], #4
LDR R7 =[R0], #4 ; the stopped operation
LDR R8 =[R0], #4

The EPSR uses bits [15:12] to store the number of
the next register operand in the multiple operation.

R6

After servicing the interrupt, the processor returns
to the register pointed to by [15:12] and
resumes the multiple operation.

LDR R5 =[R0], #4
LDR R6 =[R0], #4
LDR R7 =[R0], #4 ; resume the stopped op
LDR R8 =[R0], #4

ESPR [15:12] (=ICI [5:2])

equivalent instructions with !
post-indexed

LDR R5, =[R0], #4
LDR R6, =[R0], #4
LDR R7, =[R0], #4
LDR R8, =[R0], #4

LDMIA R0!, { R5-R8 }

the multiple operation

could be R5, R6, R7, R8
In this example

Nesting, Tail Chaining, and
Late Arrival

50 Young Won Lim
8/18/23

Thumb state

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● The Cortex-M3 processor only supports
execution of instructions in Thumb state.

● The following can clear the T bit to 0:

● instructions BLX, BX and POP{PC}

● restoration from the stacked xPSR value
on an exception return

● bit[0] of the vector value on an exception entry or reset.

● Attempting to execute instructions when the T bit is 0
results in a fault or lockup. See Lockup for more
information.

Nesting, Tail Chaining, and
Late Arrival

51 Young Won Lim
8/18/23

Current state bit in CPSR

https://www.embedded.com/introduction-to-arm-thumb/

● The CPSR register holds
• processor mode bits (user or exception flag)
• interrupt mask bits
• condition codes and
• Thumb status bit

● The Thumb status bit (T) indicates
the processor’s current state:
• 0 for ARM state (default)
• 1 for Thumb.

● Although other bits in the CPSR may be modified in
software, it’s dangerous to write to T directly;
• the results of an improper state change are

unpredictable.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

N Negative flag
Z Zero flag
C Carry flag
V Overflow flag

To disable Interrupt (IRQ), set I
To disable Fast Interrupt (FIQ), set F

USR User mode
FIQ Fast Interrupt mode
SVC Supervisor mode
ABT Abort mode
UND Undefined mode
SYS System mode

Nesting, Tail Chaining, and
Late Arrival

52 Young Won Lim
8/18/23

ESPR T-bit field

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Field Name Definition
[24] T

The T-bit can be cleared
using an interworking instruction
where bit [0] of the written PC is 0.

It can also be cleared
by unstacking from an exception
where the stacked T bit is 0.

Executing an instruction
while the T bit is clear causes
an INVSTATE exception.

Nesting, Tail Chaining, and
Late Arrival

53 Young Won Lim
8/18/23

Interruptible-Continuable Instruction (ICI) bits

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Field Name Definition

[31:27] - Reserved.

[26:25], [15:10] ICI Interruptible-continuable instruction bits.

When an interrupt occurs during an LDM or STM operation,
the multiple operation stops temporarily.

The EPSR uses bits [15:12] to store the number of
the next register operand in the multiple operation.

After servicing the interrupt, the processor returns
to the register pointed to by [15:12] and
resumes the multiple operation.

If the ICI field points to a register that is
not in the register list of the instruction, the processor
 continues with the next register in the list, if any.

Nesting, Tail Chaining, and
Late Arrival

54 Young Won Lim
8/18/23

If-Then (IT) block

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Field Name Definition

[26:25], [15:10] IT If-Then bits.
These are the execution state bits of the If-Then instruction.
They contain the number of instructions
in the if-then block and the conditions for their execution.

[24] T The T-bit can be cleared using an interworking instruction
where bit [0] of the written PC is 0.
It can also be cleared by unstacking
from an exception where the stacked T bit is 0.
Executing an instruction while the T bit is clear
causes an INVSTATE exception.

[23:16] - Reserved.

[9:0] - Reserved.

Nesting, Tail Chaining, and
Late Arrival

55 Young Won Lim
8/18/23

Interruptible LDM, STM (5)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● If an STM or LDM instruction is interrupted,
EPSR is set to indicate the point
from which the execution can continue,
and then exception entry is triggered.

● the stacked PSR value that contains this information,
just as it contains the Thumb bit from the interrupted code.

● If your new context has
zero in the ISI bits of the stacked PSR,
you should not see a usage fault exception
for the reasons you give.

Nesting, Tail Chaining, and
Late Arrival

56 Young Won Lim
8/18/23

Interruptible LDM, STM (7)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● The ICI/IT field is part of EPSR, not IPSR,
not that it makes a huge amount of difference
if you're interacting with xPSR.

● If an STM or LDM instruction is interrupted,
EPSR is
● set to indicate the point

from which the execution can continue, and then
● exception entry is triggered.

● It is therefore the stacked PSR value
that contains this information,

just as it contains the Thumb bit
from the interrupted code.

● If your new context has zero
in the ISI bits of the stacked PSR,
you should not see a usage fault exception for the reasons
you give. (In the absence of any code, I can't really be
more specific than this.)

Nesting, Tail Chaining, and
Late Arrival

57 Young Won Lim
8/18/23

Interruptible LDM, STM (8)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● If LDM and STM are implemented
as restartable or continuable,
then no, the stack will not be corrupted by this process.
(That would be a nightmare!)

● If LDM and STM are restartable
then the stack pointer is simply reset to the value
it had at the start of the LDM/STM
and the instruction is executed anew;

● if they are continuable
then the stack pointer is not modified
but a partial STM/LDM is performed
to complete the instruction.

Nesting, Tail Chaining, and
Late Arrival

58 Young Won Lim
8/18/23

Interruptible LDM, STM (9)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● You don't mention exactly how you're achieving a context switch,
but I assume you are manually pushing r4-r11 to the process stack,
then saving the PSP somewhere
and updating it to point to the new context on a different stack,
before popping r4-r11 and triggering an exception return
- that's certainly the usual way to go about it.

Nesting, Tail Chaining, and
Late Arrival

59 Young Won Lim
8/18/23

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

