Nesting, Tall Chaining, and Late Arrival

Young Won Lim
8/18/23

Copyright (c) 2023 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Nesting, Tail Chaining, and 2 Young Won Lim
Late Arrival 8/18/23

mailto:youngwlim@hotmail.com

Based on

ARM System-on-Chip Architecture, 2" ed, Steve Furber
Introduction to ARM Cortex-M Microcontrollers
— Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibafnez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Nesting, Tail Chaining, and 3 Young V\é(;;_]SbIng
Late Arrival

Nesting, Tail Chaining, and Late Arrival

* preemption
interrupts the context
by pushing registers onto a stack
and popping them later
to return to the interrupted context

* tail-chaining
allows additional handlers to be executed
without additional pushing and popping of registers.

consider a diagram
priority on the vertical axis
time on the horizontal.

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 4 Young Won Lim
Late Arrival 8/18/23

Nesting (1)

Higher priority * athread
A * two interrupt, (IRQ1 has a higher priority than IRQ2)
IRQ1 |_|
IRQ1 preempts IRQ2
IRQ2 |_| IRQ2 has a lower priority
Base CPU
>
IRQ2 IRQ1
A N
 Z . \ |
Core execution foreground push ISR2 push ISR1 pop | ISR2 | pop foreground
\ | |
| R— ‘)
ISR1
ISR2 ISR2
https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E
Nesting, Tail Chaining, and 5 Young Won Lim
8/18/23

Late Arrival

Nesting (2)

* initially, the thread is running at base priority level.

« at some point IRQ2 is requested and
the thread is immediately preempted
by pushing it onto the stack,
and start running the ISR2

IRQ1 preempts IRQ2

* When ISR2 completes,
we pop back to the thread.

foreground ISR2 push ISR1 pop | ISR2 | pop

foreground

 when ISR1 completes, we pop back
to the next highest priority ISR2.

* while ISR2 is active, IRQ1 requests
since IRQ1 has a higher priority than IRQ2,
ISR2 is also preempted
and pushed onto the stack,
and ISR1 is executed.

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 6
Late Arrival

Young Won Lim
8/18/23

Nesting (3)

* The benefit
- distinct levels of priority
- always working on the most important task Stack frame
- minimize the interrupt latency ForiSRr1
for the highest priority interrupt at any time.

Stack frame
* The cost For ISR2

- a few cycles performing housekeeping (push, pop)
around the interrupts.

increasing stack
e creating multiple stack frames

increases the need for stack memory
consumes energy for several memory cycles

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 7 Young Won Lim
Late Arrival 8/18/23

Tail chaining (1)

Higher priority

A

IRQ1 |_|
_I_L IRQ2 cannot preempt IRQ1 IRQ2 must wait
IRQ2 has lower | equal prioity ISR2 is served after ISR1
IRQ2
Base CPU
L
IRQ1 IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
ISR1
ISR2
/// - \
.| pop |push J ISR2 pop foreground
https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E
Nesting, Tail Chaining, and 8 Young Won Lim
8/18/23

Late Arrival

Tail chaining (2)

e Priority (IRQ2) < Priority (IRQ1) « Atthe end of ISR1,
thus IRQ2 cannot preempt IRQ1. the NVIC then arbitrates to IRQ2 and runs ISR2
simply by reading the vector table again and
* |IRQ1 preempts the thread with a stack push. branching to that address.
* while ISR1 runs, IRQ2 occurs,
* |IRQ2 remains pending e Only when ISR2 is completed
* |SR1 runs to completion and there are no other pending interrupts,

the stack popped to return to the thread.

IRQ2 cannot preempt IRQ1 IRQ2 must wait

IRcil IRfZ IRQ2 has lower | equal prioity ISR2 is served after ISR1
foreground push ISR1 TC ISR2 pop foreground
read the vector table again
branch to ISR2 address
*********************** \{/**********************\
push ISR1 pop |push ISR2 pop foreground

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and o) Young Won Lim
Late Arrival 8/18/23

Tail chaining (3)

e Priority (IRQ2) < Priority (IRQ1)

thus IRQ2 cannot preempt IRQ1.

IRQ2 cannot preempt IRQ1

* Atthe end of ISR1, (tail chaining)

the NVIC then arbitrates to IRQ2 and runs ISR2
simply by reading the vector table again and
branching to that address.

IRQ2 has lower | equal prioity

IRQ2 must wait
ISR2 is served after ISR1

foreground

TC

ISR2

pop

foreground

read the vector table again
branch to ISR2 address

In this case, there was less control of interrupt latency.

as any lower or equal priority interrupt

cannot preempt, must wait

that occurred while another interrupt was active,
would have to wait for that active ISR to complete.

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and

Late Arrival

10

Young Won Lim
8/18/23

Tail chaining (4)

to perform the housekeeping between interrupts
* fewer cycles were spent
e Jess energy used
* less memory space used

these lead to
 better overall throughput
* lower power
* smaller memory requirements

IRQ2 cannot preempt IRQ1 IRQ2 must wait

IRQ1 IRiZ IRQ2 has lower | equal prioity ISR2 is served after ISR1
foreground ‘ push ‘ ISR1 ‘ TC ‘ ISR2 ‘ pop ‘ foreground
read the vector table again
branch to ISR2 address
{ pop |push) ISR2 pop foreground

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and
Late Arrival

Young Won Lim
8/18/23

11

Tail chaining (5)

* ARM recommends programming interrupts into
as few priority levels as needed,
and therefore, using tail-chaining as widely as possible
to take advantage of these benefits.

Priority (IRQ4) 4 e

< Priority (IRQ3)

< Priority (IRQ2) fsral | isme] | fsre | [Tsea | | isme|

< Priority (IRQ1) | | | | |

4 distinct priority levels | U tteutotonttonttontutpstutpstulpsutps sl

Priority (IRQ4)

= Priority (IRQ3)

= Priority (IRQ2)

= Priority (IRQ1)

the same priority level

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 12
Late Arrival

Young Won Lim
8/18/23

Late arrival A (1)

Higher priority

A

IRQ1
{ | IRQ1 preempts IRQ2 IRQ1 is handled even after
IRQ2 | | IRQ2 has a lower priority IRQ2’s entry sequence has started
\\\) /
Base CPU T

Exception entry

IRQ2 ¢IRQ1
Core execution foreground push ISR1 TC ISR2 pop foreground
ISR1
ISR2

|« e \‘
push | push ISR1 pop ISR2 pop foreground

\ |
‘\!RQZ MRQL rRQl/ IRQ/Z/‘

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

Young Won Lim

Nesting, Tail Chaining, and
8/18/23

Late Arrival

13

Late arrival A (2)

» a higher priority exception is handled
before a lower priority exception

* just after the entry sequence of
a lower priority exception has started

* the lower priority exception is handled
after the higher priority exception is completed

IRQ1 preempts IRQ2 IRQ1 is handled even after
IRQ2 has a lower priority IRQ2’s entry sequence has started
IRQ2 ¢ IRQ1 Exception entry IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
{/f 777 N
\ { | }
push | push ISR1 pop ISR2 pop foreground
[- 4 ‘
RQ2IIRQL ~ RQ1 IRQ2

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 14 8/18/23

Late arrival A (3)

 also, in the case of the late-arriving interrupt, * while this is happening,
the processor might execute its ISR a higher priority IRQ1 interrupt occurs
after fewer cycles of interrupt latency.
* The processor still has to read
* alower priority IRQZ2 interrupt causes the vector table to get the new vector
the interrupt entry sequence to start. * but does not need to restart the stack push,
S0 some cycles may be saved.
* the interrupted context has its registers
pushed onto the stack.

IRQ1 preempts IRQ2 IRQ1 is handled even after
IRQ2 has a lower priority IRQ2’s entry sequence has started
IRQ2 ¢ IRQ1 Exception entry IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
r/ 77777777777777777777777 - |
‘ | |
push | push ISR1 pop ISR2 pop foreground
| 5 /‘ |
MRQ2IRQL = IRQL IRQ2

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 15 Young Won Lim
Late Arrival 8/18/23

Late arrival B (1-1)

Higher priority

IRQ1 1
f 5 IRQ2 cannot preempt IRQ1 IRQ2 must wait
IRQ2 |) |_| IRQ2 has a lower priority ISR2 is served after ISR1
\ N //
Base CPU o
L
IRQ1 end of ISR1 ¢ IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
ISR1
ISR2
A R N T T T A
push ISR1 pop | push ISR2 pop foreground
JRQL IRQ1'IRQ2 IRQ2/

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

Nesting, Tail Chaining, and 16 Young Won Lim
Late Arrival 8/18/23

Late arrival B (1-2)

Higher priority

IRQ1 / \ [
f 5 IRQ1 does not preempt IRQ2 IRQ1 waits
IRQ2 | |_|) IRQ2 has a lower priority ISR1 is served after ISR2
\ N //
Base CPU o
>
IRQ2 just at the end of ISR2 IRQ1
Core execution foreground push ISR2 TC ISR1 pop foreground
ISR1
ISR2
PO \\ 777777777777777777777777 \
push ISR2 pop |push ISR1 pop foreground
RQ2 IRQ2JIRQL IRQ1'

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

Nesting, Tail Chaining, and 17 Young Won Lim
Late Arrival 8/18/23

Late arrival B (2)

e A similar case arises * Again, the vector table needs to be read
if a new interrupt ISR2 arrives to access the new ISR1,
just before the end of an ISR1, but tail-chaining does not require

any stacking operation

* Priority (IRQ2) < Priority (IRQ1)

* Priority (IRQ2) > any_other pending or active ISR« The interrupt latency could be
lower than normal.

* so that the newly detected interrupt
immediately becomes the next interrupt
to be handled in priority order.

IRQ1 end of ISR1 ¢ IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
;’, 77777777777777777777777 N
| push ISR1 pop |push ISR2 pop foreground
\IRQ1 IRQ1 ' IRQ2 IRQ2

- - - = “ ~ . | .
Nesting, Tail Chaining, | | | Young Won Lim
1 1 3 8/18/23
|

Late Arrival

SR . |

Late arrival C (1)

Higher priority

Ve \\\ IRQ1 occurs just IRQ1 does not preempt IRQ2
IRQ1 \ _ |_| | at the IRQ2’s exit sequence IRQ1 can abort IRQ2’s exit sequence
IRQ2 |_|
Base CPU
L
IRQ2 . IRQ2
/
Core execution foreground push ISR2 _ |pop TC) ISR1 pop foreground
/
ISR1
ISR2
P R NS T Y
push ISR2 pop | push ISR1 pop foreground
IRQ2 IRQ2IRQ1 IRQ1l/

https://lwww.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAGE

Nesting, Tail Chaining, and 19 Young Won Lim
Late Arrival 8/18/23

Late arrival C (2)

* In the case where
the exception exit has already started,

a similar situation arises.

 In the traditional model,
the stack pop would have to complete,
and then those same registers
would need to be pushed again
as part of the new exception handler.

In Cortex M,

the stack pop can simply be abandoned,
leaving the stack frame on the stack,
and only a tail-chain is then needed

to enter the new ISR.

|
|
|
IRQ1 IRQ1 | IRQ2 IRQ2
|
Traditional Interrupt handling ush o‘ ush o
Must complete stack cycle P pop P pop
|
i
IRQ1 -7 IRQ1L i N IRQ2
/ \
ARMv8-M processor may abandon 4 o
stack operation dynamically s \ pop = LS ; pop
|
|
[
|
|

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and

Late Arrival

20

Young Won Lim
8/18/23

Late arrival C (3)

« ARM7TDMI

* Load Multiple uninterruptible and hence
* The core must complete

* The POP and then full stack PUSH

|
|
|
|
|
|
|
T
push pop push pop
Must complete stack cycle

IRQ1 IRQ1 IRQ2 IRQ2
Traditional Interrupt handling

|

|

|

|

| * ARMv8-M Processor

i * POP may be abandoned early

| * if another Interrupt arrives

| . .

| * If POP is interrupted,

i * the new handler can be fetched directly

IRQ1 ///IRQli . IRQ2
/ \

ARMv8-M processor may abandon 4 o
stack operation dynamically push \ pop = S pop

|

[

|

|

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 21 Young Won Lim
Late Arrival 8/18/23

Late arrival C (4)

Higher priority

A
IRQ1 |_|
IRQ2 |_|

Base CPU

IRQ1 CRQL
\
/
- [|
ARMv8-M processor may abandon push \ pop i TC /)
stack operation dynamically \ .
IRQ1 IRQL IRQ2
Traditional Interrupt handling
Must complete stack cycle L po push

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmAG6E

Nesting, Tail Chaining, and 292 Young Won Lim
Late Arrival 8/18/23

Nesting, Tail Chaining, and Late Arrival (2)

* The ARM-Architecture Reference Manual mentions
three design options that can be implemented for CortexM.

* In the Instruction Set Attribute Register 2 (ID_ISAR?2), bits[11:8]:
* None supported.
This means the LDM and STM instructions are
not interruptible. ARMv7-M reserved.

e LDM and STM instructions are restartable.

e LDM and STM instructions are continuable.

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

Nesting, Tail Chaining, and 23 Young Won Lim
Late Arrival 8/18/23

Late Arrival (1)

* A late-arriving interrupt is an interrupt which is
recognized after the processor has started
its exception entry procedure.

 |If the late-arriving interrupt has
higher pre-empting priority
than the exception which the processor
has already started to handle,
then the existing stack push will continue
but the vector fetch will be re-started
using the vector for the late-arriving interrupt.

after starting an exception entry,
other interrupts are requested

current stack operation - utilized
current vector fetch - not used

abandoned,
restarted

Late Arrival IRQ1 IRQ1 preempts IRQ2 IRQ1 is handled even after
- pre-empting IRQ2 has a lower priority IRQ2’s entry sequence has started
|RQ2 ¢ |RQ1 Exception entry |RQ2
Core execution foreground push ISR1 TC ISR2 pop foreground

https://developer.arm.com/documentation/ka001190/latest

Nesting, Tail Chaining, and 24
Late Arrival

Young Won Lim
8/18/23

Late Arrival (2)

* This guarantees that the interrupt after starting an exception entry,
with the highest pre-empting priority other interrupts are requested

will be serviced first,
but in some circumstances

current stack operation - utilized

this results in some wasted cycles current vector fetch - not used
from the original vector fetch abandoned,
which was abandoned. restarted

- wasted cycles

Late Arrival IRQ1 IRQ1 preempts IRQ2 IRQ1 is handled even after
- pre-empting IRQ2 has a lower priority IRQ2’s entry sequence has started
IRQ2 ¢ IRQ1 Exception entry IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground

A N
} 1 ‘\‘ |
| push | push ISR1 pop ISR2 pop foreground
| \)
RQ2 RQL ~ IRQL] IRQ2

https://developer.arm.com/documentation/ka001190/latest

Nesting, Tail Chaining, and 25 Young Won Lim
Late Arrival 8/18/23

Late Arrival (3)

 |f the late-arriving interrupt
has only equal priority to (or lower priority than)
the exception which the processor
has already started to handle,
then the late-arriving interrupt
will remain pending until
after the exception handler
for the current exception has run

IRQ2 cannot preempts IRQ1 Pending IRQ2

Late Arrival IRQ2

- pending IRQ2 has a lower priority Wait
IRQ1 ¢ IRQ2 Exception entry IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
77777777777777777777777 AN ’777777777777777777777"\‘
i push ISR1 pop | push ISR2 pop foreground
\ /\\\ 77777777777777777777777 1
IRQT IRQ1 IRQ2 IRQ2

https://developer.arm.com/documentation/ka001190/latest

Nesting, Tail Chaining, and 26 Young Won Lim
Late Arrival 8/18/23

Late Arrival (4)

e This is because the late-arriving behaviour
is classed as a pre-empting behaviour, and
is therefore dependent only
upon the pre-empting priority levels
of the interrupts and exceptions.

Late Arrival IRQ1 IRQ1 preempts IRQ2 IRQ1 is handled even after
- pre-empting IRQ2 has a lower priority IRQ2’s entry sequence has started
IRQ2 ¢ IRQ1 Exception entry IRQ2
Core execution foreground push ISR1 TC ISR2 pop foreground
Late Arrival IRQ2 IRQ2 cannot preempts IRQ1 Pending IRQ2
- pending IRQ2 has a lower priority Wait
IRQ1 ¢ ¢ IRQ2 Exception entry IRQ2
Core execution foreground ‘ push ‘ ISR1 ‘ TC ‘ ISR2 ‘ pop ‘ foreground

https://developer.arm.com/documentation/ka001190/latest

Nesting, Tail Chaining, and 27 Young Won Lim
Late Arrival 8/18/23

Late Arrival (5)

* Because the stack push has already been initiated,
the interrupt latency
(meaning the number of cycles
between the arrival of the interrupt request and
execution of the first instruction of its handler)

might be less than the standard interrupt latency
for the particular processor and system.

Standard Stack Operations

PR,

i
Eaﬁfefmi'n'gql push | push I pop ISR2 pop foreground
|

Late Arrival IRQ2
- pending

push ISR1 pop | push ISR2 pop foreground

\
N

~_ R EEEE————————————————

IRQ1 IRQ1 IRQ2 IRQ2

|
|
|
\

https://developer.arm.com/documentation/ka001190/latest

Nesting, Tail Chaining, and 28 Young Won Lim
Late Arrival 8/18/23

Late Arrival (6)

» Some (but not all) Cortex-M processors provide Interrupt latency > min value
an implementation-time option for the chip designer
to specify a minimum value for the interrupt latency,
reducing or removing the uncertainty in interrupt latency

min value
: set at the implementation time

by adding stall cycles in such cases. add stall cycles
to small interrupt latency
* Documentation of the specific chip to meet the min value

should provide details of this setting, if applicable.

https://developer.arm.com/documentation/ka001190/latest

Nesting, Tail Chaining, and 29 Young Won Lim
Late Arrival 8/18/23

Single copy atomicity in ARM (1)

* aread or write operation is single-copy atomic
if the following conditions are both true:

« after any number of write operations to a memory location,
the value of the memory location is
the value written by one of the write operations.

* Itis impossible for part of the value of the memory location
to come from one write operation
and another part of the value to come
from a different write operation

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 30 8/18/23

Single copy atomicity in ARM (2)

* When a read operation and a write operation
are made to the same memory location,
the value obtained by the read operation is one of:

* the value of the memory location
before the write operation

* the value of the memory location
after the write operation.

* It is never the case that
the value of the read operation is
partly the value of the memory location
before the write operation
and partly the value of the memory location
after the write operation.

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

Nesting, Tail Chaining, and 31 Young Won Lim
Late Arrival 8/18/23

Single copy atomicity in ARM (3)

* So your understanding is right - the defining point of a
single-copy atomic operation is that at any given time you
can only ever see either all of it, or none of it.

* There is a case in v7 whereby (if I'm interpreting it right)
two normally single-copy atomic stores that occur to the
same location at the same time but with different sizes
break any guarantee of atomicity, so in theory you could
observe some unexpected mix of bytes there - this looks
to have been removed in v8.

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

Nesting, Tail Chaining, and 32 Young Won Lim
Late Arrival 8/18/23

Interruptible LDM, STM (1)

* the load multiple (LDM) instructions are
explicitly not atomic.

e section A3.5.3 of the ARM V7C
architecture reference manual.

e LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD,
PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR
instructions

« are executed as a sequence of
word-aligned word accesses.

* each 32-bit word access is guaranteed
to be single-copy atomic.

* the architecture does not require
subsequences of two or more word accesses
from the sequence to be single-copy atomic.

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

Nesting, Tail Chaining, and 33 Young Won Lim
Late Arrival 8/18/23

Interruptible LDM, STM (2)

e the LDM/STM instructions
can be aborted by an interrupt
and restarted from the beginning on interrupt return

 LDM and STM instructions
can always be interrupted by a data abort,
so they're non atomic in that sense.

* Otherwise, the ARMv7-A architecture
does its best to help you out.

 for interrupts, they can only be interrupted
* if low interrupt latency is enabled,
* AND normal memory is being accessed.

* So at the very least, you won't get
repeated accesses to device memory.

* You don't want to do anything
that expects atomic read/writes of normal memory
though.

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 34 8/18/23

Interruptible LDM, STM (3)

« Onv7-M, LDM and STM can be interrupted at any time

e see section B1.5.10 of the ARMv7-M Architecture
Reference Manual

* It's implementation defined

* whether or not the instruction is restarted from the
beginning of the list of loads/stores,
or whether it's restarted from where it left off.

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 35 8/18/23

Interruptible LDM, STM (4)

* Asthe ARM says:

« The ARMv7-M architecture supports
* continuation of, or
* restarting from the beginning,
* an abandoned LDM or STM instruction
as outlined below.

* Where an LDM or STM is abandoned and restarted
(ICI bits are not supported),
* the instructions should not be used with volatile memory.

* In other words, don't rely on LDM or STM being atomic
if you're trying to write portable code.

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

Nesting, Tail Chaining, and 36 Young Won Lim
Late Arrival 8/18/23

Nesting, Tail Chaining, and 37 Young Won Lim
Late Arrival 8/18/23

Interruptible LDM, STM (6)

« Application Program Status Register (APSR)

* The APSR contains the current state of the condition
flags from previous instruction executions.

* Interrupt Program Status Register (IPSR)

* The IPSR contains the exception type number of the
current Interrupt Service Routine (ISR)

« Execution Program Status Register (EPSR)

* The EPSR contains
* the thumb state bit, and
* the execution state bits

* for either the:

e If-Then (IT) instruction

* Interruptible-Continuable Instruction (ICl) field
for an interrupted load multiple or store multiple
instruction.

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 38 8/18/23

if-Then (IT) block

* The If-Then (IT) block contains
up to four instructions following an IT instruction

. o . . ITTET EQ
e each instruction in the block is conditional.
ADD r0,r0,r0
* the conditions for the instructions are ADIDYFLAOLGE
) ADD r2,r0,rO
e eijther all the same, or Then
. ADD r3,r0,r0
e some can be the inverse of others. Else
IT block size =4
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers
Nesting, Tail Chaining, and Young Won Lim
9, 9 39 8/18/23

Late Arrival

If-Then (IT) block examples

First note that most instruction can specify a condition code
in ARM instruction, not in Thumb.

With IT instruction, you can specify condition code for up to 4 instructions.
For each instruction, you specify if it's part of the If (T) or Else (E).

For example:

ITTET EQ Then, Then, Else, Then - EQ, EQ, NE, EQ
ADD r0,r0,rO
ADD r1,r0,rO
ADD r2,r0,rO
ADD r3,r0,r0

Will actually translate to:
ADDEQ r0,r0,r0 (Always if for 1st one)
ADDEQ r1,r0,rO (T for 2nd one)

ADDNE r2,r0,r0 (E for 3rd one)
ADDEQ r3,r0,r0 (T for 4th one)

https://stackoverflow.com/questions/36558926/what-does-the-arm7-it-if-then-instruction-really-do

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 40 8/18/23

Condition Code Encoding

Code Suffix Flags Meaning
0000 EQ Z set equal
0001 NE Z clear not equal
0010 CS C set unsigned higher or same
0011 CC C clear unsigned lower
0100 Ml N set negative
0101 PL N clear positive or zero
0110 VS V set overflow
0111 VC V clear no overflow
1000 HI C set and Z clear unsigned higher
1001 LS C clear or Z set unsigned lower or same
1010 GE N equals V greater or equal
1011 LT N not equal to V less than
1100 GT Z clear AND (N equals V) greater than
1101 LE Z set OR (N not equal to V) less than or equal
1110 AL (ignored) always
1111 rsvd
- . P1, P2, P3, P4
base condition
http://www.csbio.unc.edu/mcmillan/Media/arm-instructionset. pdf
Nesting, Tail Chaining, and 41 Young V\gﬁsblzrg

Late Arrival

ESPR fields for IT block (1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

- ICIT | T - ICIIT -
1 O 7 6 5 4 3 2
IT[1:0] IT[7:4] 1T[3:2]
A J

IT[7:5] holds the base condition for the current IT block.
2 6 5 4 3 2 1 0 The base condition is the top 3 bits of the condition
specified by the IT instruction.

JUl7=2) JUE0) This subfield is 06000 when no IT block is active.
base IT block size
condition Isb of condition code

IT[4:0] encodes the size of the IT block.
encodes the value of the least significant bit
of the condition code for each instruction in the block.
(P1, P2, P3, P4)

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 42 8/18/23

ESPR fields for IT block (2)

IT[4:0]

[7:5]
cond_base
cond_base
cond_base
cond_base
000

7 6 5 4 3 2 1 0
IT[7:5] IT[4:0]

encodes the size of the IT block.
This is the number of instructions

that are to be conditionally executed.
The size of the block is implied by the position
of the least significant 1 in this field

encodes the value of the least significant bit
of the condition code for each instruction in the block.

(P1, P2, P3, P4)

41 B [2] [1] [0

P1 P2 P3 P4 1
P1 P2 P3 1 0
P1 P2 1 0 0
P1 1 0 0 0
0 0 0 0 0

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Nesting, Tail Chaining, and

Late Arrival

Entry point for 4-instruction IT block
Entry point for 3-instruction IT block
Entry point for 2-instruction IT block
Entry point for 1-instruction IT block

Normal execution, not in an IT block

43

ITTET EQ

ADD r0,r0,r0
ADD r1,r0,rO
ADD r2,r0,rO
ADD r3,r0,r0

IT block size

=4

Young Won Lim
8/18/23

ESPR fields for IT block (3)

Entry point for 4-instruction IT block
Entry point for 3-instruction IT block
Entry point for 2-instruction IT block
Entry point for 1-instruction IT block
Normal execution, not in an IT block

ADDEQ r0,r0,rO (Always if for 1st one)
ADDEQ r1,r0,rO (T for 2nd one)
ADDNE r2,r0,r0 (E for 3rd one)

7 6 5 4 3 2 1 0
IT[7:5] IT[4:0]

[7:5] [41 31 [2] [1] [O]
cond_base P1 P2 P3 P4 1
cond_base P1 P2 P3 1 0
cond_base P1 P2 1 0 0
cond_base P1 1 0 0 0
000 0 0 0 0 0
ITTET EQ
ADD r0,r0,r0
ADD r1,r0,r0
ADD r2,r0,r0
ADD r3,r0,r0

EQ condition code = 000

NE condition codc = 0001

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

ADDEQ r3,r0,r0 (T for 4th one)

base code = 000
P1=0, P2=0, P3=1, P4= E

IT[7:5] = 000, IT[4:0] = 00101

Nesting, Tail Chaining, and

Late Arrival

44

Young Won Lim
8/18/23

Interruptible-Continuable Instructions (ICI)

* When an interrupt occurs during the execution of
an LDM, STM, PUSH, or POP instruction,
the processor:

 stops the load multiple or store multiple instruction
operation temporarily

 stores the next register operand in the multiple
operation to EPSR bits[15:12].

 after servicing the interrupt, the processor:
 returns to the register pointed to by EPSR bits[15:12]

* resumes execution of the multiple load or store * When the EPSR holds ICI execution state
instruction. bits[26:25,11:10] are zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- 0(0|T - 0/0 -

https://developer.arm.comMocfnentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 45 8/18/23

ESPR fields for ICI bits (1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— ICI/IT| T — ICINT —
7 6 5 4 3 2 1 0
0|0 00

When an interrupt occurs during an LDM or STM operation,

Y the multiple operation stops temporarily.
00 0|0
7 6 5 4 3 2 1 0 The EPSR uses bits [15:12] to store the number of
00 ICI[5:2] 00 the next register operand in the multiple operation.
Register
number After servicing the interrupt, the processor returns

to the register pointed to by [15:12] and
ESPR [15:12] resumes the multiple operation.
ICI [5:2] If the ICI field [5:2] points to a register that is
not in the register list of the instruction, the processor
continues with the next register in the list, if any.

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Nesting, Tail Chaining, and 46 Young Won Lim

Late Arrival

8/18/23

LDM / STM examples (1)

allowing several values to be loaded or stored

For example, LDMIA instruction allows
loading into multiple registers (R5, R6, R7, R8)

starting at an address named in another register (RO).

Consider the example of adding the integers of an array.
LDMIA can be used to processes four integers with each

iteration of the loop.
In this way, fewer instructions can be used,
at the expense of more complexity.

http://www.cburch.com/books/arm/

Nesting, Tail Chaining, and
Late Arrival

47

R4 =

0

LDMIA RO!, { R5-R8}

R5

R6

R7

11l

R8

Young Won Lim
8/18/23

LDM / STM examples (2)

If the exclamation mark ! following RO is omitted,

then the address register RO is not altered
RO would continue pointing to the first integer in the array. - RS
L S — R6
we want RO to change so that it is pointing — R7
to the next four integers for the next iteration, — RS
the exclamation point should be included
LDMIA RO!, { R5-R8}
equivalent instructions without ! equivalent instructions with !
pre-indexed post-indexed
LDR R5, =[RO, #0] LDR R5, =[RO], #4
LDR R6, =[RO, #4] LDR R6, =[RO], #4
LDR R7, =[RO, #8] LDR R7, =[RO], #4
LDR R8, =[RO, #12] LDR R8, =[R0O], #4
ADD RO, RO, #12
http://www.cburch.com/books/arm/
i i ini Young Won Lim
Nesting, Tail Chaining, and 48 o on

Late Arrival

LDM / STM examples (3)

LDMIA RO!, { R5-R8} Assume an interrupt happens in the middle of
LDR R6 =[R0], #4 operation

When an interrupt occurs during an LDM or STM operation,
the multiple operation stops temporarily.
LDR R5 =[R0O], #4
= LDR R6 =[RO], #4

equivalent instructions with !
post-indexed

LDR RS, =[RO], #4 LDR R7 =[R0], #4 ; the stopped operation
LDR R6, =[RO], #4 LDR R8 =[RO], #4
LDR R7, =[R0O], #4
LDR R8, =[RO], #4 The EPSR uses bits [15:12] to store the number of
the next register operand in the multiple operation.
the multiple operation R6
ESPR [15:12] (=ICI [5:2]) After servicing the interrupt, the processor returns

to the register pointed to by [15:12] and
resumes the multiple operation.

could be R5, R6, R7, R8

: LDR R5 =[R0O], #4
In this example
IS examp = LDR R6 =[R0], #4
LDR R7 =[RO], #4 ; resume the stopped op

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02 LDR R8 =[RO]’ #4

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 49 8/18/23

Thumb state

* The Cortex-M3 processor only supports
execution of instructions in Thumb state.

* The following can clear the T bit to 0:
* instructions BLX, BX and POP{PC}

e restoration from the stacked xPSR value
on an exception return

* Dbit[0] of the vector value on an exception entry or reset.
* Attempting to execute instructions when the T bitis 0

results in a fault or lockup. See Lockup for more
information.

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

Nesting, Tail Chaining, and 50 Young Won Lim
Late Arrival 8/18/23

Current state bit in CPSR

 The CPSR register holds

processor mode bits (user or exception flag) N Negative flag
interrupt mask bits Z Zero flag
condition codes and C Carry flag

V Overflow flag

Thumb status bit
To disable Interrupt (IRQ), set |

* The Thumb status bit (T) indicates To disable Fast Interrupt (FIQ), set F
the processor’s current state:
0 for ARM state (default) USR User mode
1 for Thumb. FIQ Fast Interrupt mode

SVC Supervisor mode
ABT Abort mode

* Although other bits in the CPSR may be modified in UND Undefined mode
software, it's dangerous to write to T directly; SYS System mode
the results of an improper state change are
unpredictable.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z CV |l F T mode

https://www.embedded.com/introduction-to-arm-thumb/

Nesting, Tail Chaining, and 51 Young Won Lim
Late Arrival 8/18/23

ESPR T-bit field

Field Name Definition
[24] T

The T-bit can be cleared
using an interworking instruction
where bit [0] of the written PC is O.

It can also be cleared
by unstacking from an exception
where the stacked T bit is O.

Executing an instruction

while the T bit is clear causes
an INVSTATE exception.

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Nesting, Tail Chaining, and 52 Young Won Lim
Late Arrival 8/18/23

Interruptible-Continuable Instruction (ICI) bits

Field Name Definition

[31:27] - Reserved.
[26:25], [15:10] ICI Interruptible-continuable instruction bits.

When an interrupt occurs during an LDM or STM operation,
the multiple operation stops temporarily.

The EPSR uses bits [15:12] to store the number of
the next register operand in the multiple operation.

After servicing the interrupt, the processor returns
to the register pointed to by [15:12] and
resumes the multiple operation.

If the ICI field points to a register that is

not in the register list of the instruction, the processor
continues with the next register in the list, if any.

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Nesting, Tail Chaining, and 53 Young Won Lim
Late Arrival 8/18/23

if-Then (IT) block

Field Name Definition

[26:25], [15:10] IT If-Then bits.
These are the execution state bits of the If-Then instruction.
They contain the number of instructions
in the if-then block and the conditions for their execution.

[24] T The T-bit can be cleared using an interworking instruction
where bit [0] of the written PC is 0.
It can also be cleared by unstacking
from an exception where the stacked T bit is O.
Executing an instruction while the T bit is clear
causes an INVSTATE exception.

[23:16] - Reserved.

[9:0] - Reserved.

https://developer.arm.com/documentation/ddi0337/e/ch02s03s02

Nesting, Tail Chaining, and Young Won Lim
Late Arrival o4 8/18/23

Interruptible LDM, STM (5)

e If an STM or LDM instruction is interrupted,
EPSR is set to indicate the point
from which the execution can continue,
and then exception entry is triggered.

 the stacked PSR value that contains this information,
just as it contains the Thumb bit from the interrupted code.

* If your new context has
zero in the ISI bits of the stacked PSR,
you should not see a usage fault exception
for the reasons you give.

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

Nesting, Tail Chaining, and Young Won Lim
Late Arrival 95 8/18/23

Interruptible LDM, STM (7)

 The ICI/IT field is part of EPSR, not IPSR,
not that it makes a huge amount of difference
if you're interacting with xPSR.

e If an STM or LDM instruction is interrupted,
EPSR is
 set to indicate the point
from which the execution can continue, and then
* exception entry is triggered.

* ltis therefore the stacked PSR value
that contains this information,
just as it contains the Thumb bit
from the interrupted code.

* If your new context has zero
in the 1SI bits of the stacked PSR,
you should not see a usage fault exception for the reasons
you give. (In the absence of any code, | can't really be
more specific than this.)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

Nesting, Tail Chaining, and 56 Young Won Lim
Late Arrival 8/18/23

Interruptible LDM, STM (8)

* |f LDM and STM are implemented
as restartable or continuable,
then no, the stack will not be corrupted by this process.
(That would be a nightmare!)

 |f LDM and STM are restartable
then the stack pointer is simply reset to the value
it had at the start of the LDM/STM
and the instruction is executed anew;

 if they are continuable
then the stack pointer is not modified
but a partial STM/LDM is performed
to complete the instruction.

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

Nesting, Tail Chaining, and 57 Young Won Lim
Late Arrival 8/18/23

Interruptible LDM, STM (9)

| |
* You don't mention exactly how you're achieving a context switch,
but | assume you are manually pushing r4-rl1l to the process stack,
then saving the PSP somewhere
and updating it to point to the new context on a different stack,
before popping r4-r11 and triggering an exception return
- that's certainly the usual way to go about it.

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

Nesting, Tail Chaining, and 58 Young Won Lim
Late Arrival 8/18/23

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial C

[2] http://blog.bobuhirol1.net/2014/01-13-baremetal.html

[3] http://www.valvers.com/open-software/raspberry-pi/

[4] https://lwww.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

Nesting, Tail Chaining, and 59 Young Won Lim
Late Arrival 8/18/23

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

