PC Relative Addressing

Young Won Lim
11/23/24



Copyright (c) 2024 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

PC Relative 2 Young \i\&(;gslfzrz
Addressing


mailto:youngwlim@hotmail.com

Based on

ARM System-on-Chip Architecture, 2" ed, Steve Furber
Introduction to ARM Cortex-M Microcontrollers
— Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibafnez

https://thinkingeek.com/arm-assembler-raspberry-pi/

PC Relative 3 Young \i\i(723|7|2r2
Addressing



PC Relative Addressing

PC Relative 4 Young W(;n Lim
Addressing 11/23/24



PC (Program Count) R15 Register

The Program Counter (or PC) is

a register inside the microprocessor
that stores the memory address

of the next instruction to be executed.

In ARM processors, the Program Counter is
a 32-bit register which is also known as R15.

The processor first fetches the instruction
from the address stored in the PC.

The fetched instruction is then decoded decode
so that it can be interpreted by the microprocessor.

Once decoded, the instruction can then be executed
and the PC incremented so that it contains
the address of the next instruction.

the fetch-decode-execute cycle.

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecturel-4-2.html

PC Relative 5 Young \i\ﬁgg)lfzrz
Addressing



PC (Program Count) R15 Register

memory addresses are given in bytes (byte addresses)

_ | ARM State |
memory is usually accessed by a word and _ _
aligned on word boundaries. (word addresses) 32-bit word alignment
for a high performance . ARM state instruction
+4 \
:‘ ARM state instruction
but also can be accessed by a byte or a halfword G e e T
with a performance loss
_ word addresses
I ARM mettion ANRNNIRRRRRR N NARRRRRNRRAAEE
all ARM instructions take up one word (4 bytes).
all Thumb instructions take up one halfword (2_bytes). addresses of least significant byte notused —
of a 4-byte word (little endian)
| Thumb State |
incrementing the PC for the next instruction corresponds to _ _
16-bit halfword alignment
PC + 4 in the ARM State — Thumb state instruction
. 2 :1—5— Thumb staté instruction
PC + 2 In the Thumb State 2 S Thumb state instruction
half-word addresses
addresses of least significant byte not used —
of a 2-byte halfword (little endian)
http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecturel-4-2.html
PC Relative 6 Young Won Lim
11/23/24

Addressing



PC (Program Count) R15 Register

memory addresses are given in bytes (byte addresses)

_ | ARM State |
memory is usually accessed by a word and _ _
aligned on word boundaries. (word addresses) 32-bit word alignment
fora hlgh performance 4 (] ARM state instruction
+ ( -
:‘ ARM state instruction
but also can be accessed by a byte or a halfword G I —
with a performance loss
_ word addresses
T ARM matriotion: ANRNNIRRRRRR N NARRRRRNRRAAEE
all ARM instructions take up one word (4 bytes).
all Thumb instructions take up one halfword (2_bytes). addresses of least significant byte notused —
of a 4-byte word (little endian)
| Thumb State |
incrementing the PC for the next instruction corresponds to _ _
16-bit halfword alignment
in the ARM State — Thumb state instruction
PC + 4 (In a Word addreSS) 2 :1—5— Thumb staté instruction
. 2 “»  Thumb state instruction
in the Thumb state
PC+ 2 (|n a halfWOI’d addreSS) half-Word addresses
addresses of least significant byte not used —
of a 2-byte halfword (little endian)
http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecturel-4-2.html
PC Relative 7 Young Won Lim
11/23/24

Addressing



PC (Program Count) R15 Register

The Program Counter is automatically incremented
by the size of the instruction executed.

This size is always 4 bytes in ARM state
and 2 bytes in THUMB mode.

When a branch instruction is being executed,
the PC holds the destination address.

During execution, PC stores
the address of the current instruction plus
* 8 (two ARM instructions) in ARM state,
* 4 (two Thumb instructions) in Thumb(v1) state.

This is different from x86 where PC always points
to the next instruction to be executed.

Thus the content of PC

 aword address in ARM state
* a halfword address in Thumb state

https://azeria-labs.com/arm-data-types-and-registers-part-2/

PC Relative 8 Young \i\i(;gslfzrz
Addressing



PC (Program Counter) R15 Register

[_fetch | L

Read Instruction pointed at
By Program Counter

decode L

3 stage pipeline execution

fetch

decode

execute

fetch

decode | execute

Decode the Instruction

Increment Program Counter
To point at next instruction

execute i

Execute the Instruction

:

http://mwww-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecture1-4-2.html

fetch decode | execute

\/

Execute a current instruction

Decode the next instruction

Fetch the next’s next instruction

PC Relative
Addressing

Young Won Lim
11/23/24



PC (Program Counter) R15 Register

3 stage pipeline execution

fetch | decode | execute the current instruction is being executed
fetch | decode | execute the next instruction is being decoded
fetch | decode | execute the next's next instruction is being fetched
the current when PC is accesse_d during execution,
time slot PC must have to be increased

to fetch the next’s next instruction

) ) PC+8 for ARM instructions
Execute a current instruction

Decode the next instruction PC+4 for Thumb instructions
Fetch the next’s next instruction

http://mwww-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecture1-4-2.html

PC Relative 10 Young W(;n |7im
Addressing 11/23/24



Register relative and PC relative expressions (1)

armasm supports

PC-relative and
register-relative expressions.

a register-relative expression evaluates
to a named register combined with a numeric expression.
a PC-relative expression as a label or the PC,

optionally combined with a numeric expression.

1. using label
2. using PC

3. [PC, #number] for some instructions

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

PC Relative 11 Young W(;n |7im
Addressing 11/23/24



Register relative and PC relative expressions (2)

If you specify a label, the assembler calculates

the offset from the PC value
of the current instruction
to the address of the label.

the assembler encodes the offset
in the instruction.

If the offset is too large,
the assembler produces an error.

The offset is either added to or subtracted
from the PC value to form the required address.

ARM recommends you write
PC-relative expressions using labels

rather than PC
because the value of PC depends on the instruction set.

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

PC Relative 12 Young W(7n |7im
Addressing 11/23/24



PC relative addressing (1)

1 What is PC-relative addressing?

PC-relative addressing is a way of
specifying the address of an operand
by adding or subtracting a signed offset
to the PC reqister.

The offset is usually encoded

as an immediate value in the instruction,

and it represents the number of bytes

from the current instruction to the target location.

For example, if the PC register holds

the address of the current instruction,

and the offset is 4, then the operand address is PC + 4,
which is the address of the next instruction.

https://www.linkedin.com/advice/1/how-do-you-calculate-offset-pc-relative-addressing

PC Relative 13 Young W(7n |7im
Addressing 11/23/24



PC relative addressing (2)

2 Why use PC-relative addressing?

PC-relative addressing offers several advantages
compared to other addressing modes,
such as absolute, register, or base-plus-offset.

It reduces the size of code

due to the offset usually being smaller

than the full address of the operand,

which also makes the code more portable

since it does not depend on the absolute memory location.

Additionally, PC-relative addressing
simplifies relocation of the code
since the offset does not need to be adjusted.

It also enables creation of position-independent code (PIC)
that can be executed from any address without modification
and facilitates implementation of control structures,

like jJump tables, switch statements, and loops,

by using the PC register as a base

for accessing a table of offsets.

https://www.linkedin.com/advice/1/how-do-you-calculate-offset-pc-relative-addressing

PC Relative 14 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (3)

3 How to calculate the offset for PC-relative addressing?

The offset for PC-relative addressing
depends on the instruction set architecture (ISA)
and the assembler syntax of the assembly language.

Different ISAs may have different rules for encoding
and interpreting the offset, and different assemblers
may have different ways of expressing

the offset in the source code.

However, a general formula for calculating the offset is:

offset = target_address - (current_address + instruction_size)
where target_address is the address of the operand,
current_address is the address of the current instruction,

and instruction_size is the size of the current instruction in bytes.
The offset may be positive or negative,

depending on whether the target_address is ahead or
behind the current_address.

https://www.linkedin.com/advice/1/how-do-you-calculate-offset-pc-relative-addressing

PC Relative 15 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (4)

4 How to use PC-relative addressing in assembly?

To use PC-relative addressing in assembly,
you need to know the syntax of the assembler
and the format of the instructions

that support this addressing mode.

For example, in ARM assembly,
you can use PC-relative addressing
with instructions such as

LDR (load register),

STR (store register),

B (branch), and

BL (branch with link).

The syntax for these instructions is:

LDR Rd, [PC, #offset]
STR Rd, [PC, #offset]
B label

BL label

where Rd is the destination or source register,
offset is the immediate value of the offset,
and label is a symbolic name for the target address.

The assembler will calculate the offset
based on the formula given above,
and encode it in the instruction.

Note that some instructions may have
limitations on the range

or alignment of the offset, and some
may require a special syntax

for PC-relative addressing.

https://www.linkedin.com/advice/1/how-do-you-calculate-offset-pc-relative-addressing

PC Relative
Addressing

Young Won Lim
11/23/24

16



PC relative addressing (5)

5 Examples of PC-relative addressing in assembly

To demonstrate the use of
PC-relative addressing in assembly,
here are some examples

of code snippets using this technique.

For instance,

loading a constant value from a literal pool
may involve the command 'LDR RO, [PC, #8],
while accessing a global variable requires
'LDR RO, var(PC)'.

Additionally, implementing a jump table requires
'LDR RO, [PC, R1, LSL #2].

Each of these commands is designed to load
the address of the case at PC + (R1 * 4),
followed by a 'BX RO' branch to the case.

Finally, each case is labeled and contains code
for the respective action before branching to the end.

https://www.linkedin.com/advice/1/how-do-you-calculate-offset-pc-relative-addressing

PC Relative 17 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (6)

You will be using the PC as the base address,
and you need to put the address within reach
of a pc-relative LDR.

So you'll do:

LDR PC, test_addr

test_addr .word 0x0803FF00

You just need to make sure there's not too much code
between the LDR and the ".word'.

This will translate to LDR PC, [PC, #offset].

| don't remember the reach of the offset off hand
but it's not that big.
For a short though this shouldn't be an issue.

You can google ‘arm literal pool'

and find out more about this method,
we do not however support

the '=' syntax in the Tl assembler

so you have to put the .word in yourself.
https://XZel.'fE.Com/suppoericrocontrollergarm- ased-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/331018/jump-to-address-stor

PC Relative 18 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (7-1)

| think you probably need to do this in 2 steps then.

First jump to some addresss CLOSE to 0x0803FF0O0,
using the same method talked about in the last post.
(i.e. change the .word to something like 0x0O803FEQOQ
.. Close to Ox0803FF00).

At this address you need to make sure

there is another LDR PC, [PC,#idx]

that points to 0Ox0803FEO0O

so that the contents of 0Ox0803FEQO gets loaded into the PC.

| don't think you can do this in one step

because the LDR we're using is limited to an imm12 offset...

and that's probably not going to get you from flash to RAM in one step.

https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/331018/jump-to-address-store

PC Relative 19 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (7-2)

| skimmed through the instruction set
to see if there's another way and | don't see it,
but | might be missing something.

So you can always also see
if ARM's support system has any better hints/ideas.

-Anthony

EDIT: you might also look at "SVC" but this is an exception
So it's not exactly what you want.

But its' another way to make a jump table call

without messing up the user mode registers.

https://e2e.ti.com/support/microcontrollers/arm-based-microcontrollers-group/arm-based-microcontrollers/f/arm-based-microcontrollers-forum/331018/jump-to-address-stor

PC Relative 20 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (8)

PC register holds pointer to next instruction LDR instruction
is loading the value of second operand
into first operand (for example)

LDR rO0, [pc, 0x5678]

Is equivalent to this "C code"

ro = *(pc + 0x5678)

It's pointer dereferencing with base offset.

And my question:
| found this code

LDR PC, [PC,-4]

It's commented like monkey patching, etc..

https://stackoverflow.com/questions/24115899/arm-Idr-instruction-on-pc-register

PC Relative 21 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (9)

And my question:
| found this code

LDR PC, [PC,-4]

It's commented like monkey patching, etc..
How | understand this code

pc = *(pc - 4)

| this case "pc" register will dereference

the address of previous instruction

and will contain the "machine code" of instruction
(not the address of instruction),

and program will jump to that invalid address

to continue execution,

and probably we will get "Segmentation Fault".

So what I'm missing or not understanding?

https://stackoverflow.com/questions/24115899/arm-Idr-instruction-on-pc-register

PC Relative 292 Young W(7n |7im
Addressing 11/23/24



PC relative addressing (10)

The thing that makes me to think is the brackets of second operand in LDR instruction.
As | know on x86 architecture brackets are already dereferencing the pointer,
but | can't understand the meaning in ARM architecture.

mov rl, O0x5678

add r1, pc

mov r0, [rl]

is this code equivalent to?

LDR r0O, [pc, 0x5678]

https://stackoverflow.com/questions/24115899/arm-Idr-instruction-on-pc-register

PC Relative 23 Young W(;n |7im
Addressing 11/23/24



PC relative addressing (11)

The thing that makes me to think is the brackets of second operand in LDR instruction.
As | know on x86 architecture brackets are already dereferencing the pointer,
but | can't understand the meaning in ARM architecture.

mov rl, 0x5678
add r1, pc
mov r0, [r1]

is this code equivalent to?

LDR rO, [pc, 0x5678]

e the edit: mov cannot take a memory operand (ARM is a load-store architecture),

so that code is invalid as is - if the third instruction was Idr rO, [r1] it would be equivalent.

Idr rO, [pc, 0x5678] can't be encoded as a single instruction as the immediate is too big
(i.e. it can't be represented by an 8-bit value rotated by an even number of bits).

https://stackoverflow.com/questions/24115899/arm-Idr-instruction-on-pc-register

PC Relative 24 Young \i\ﬁgg)lfzrz
Addressing



PC relative addressing (12)

LDR PC,[PC, -4] means load a word from the address formed by the current PC (R15) minus 4
and put that value in PC. Since PC is 8 bytes ahead of the current instruction you'll be loading
from current_instruction_address+8-4 == current_instruction_address+4 —

Michael

Commented Jun 9, 2014 at 8:09

Thanks, but one more thing [PC, -4] what does it do ? "pc - 4" or *(pc - 4) ? —

0gg3r

Commented Jun 9, 2014 at 8:12

That would be the latter. —

Michael

Commented Jun 9, 2014 at 8:15

in that case LDR PC, [PC,-4] will equivalent to this code pc = **((pc - 4)),

or my misunderstanding is that LDR is not dereferencing the pointer? —

https://stackoverflow.com/questions/24115899/arm-Idr-instruction-on-pc-register

PC Relative 25 Young W(;n |7im
Addressing 11/23/24



The values of PC in ARM and Thumb states

In A32 code, PC +8
the value of the PC is
the address of the current instruction plus 8 bytes,

In T32 code: PC +4
the value of the PC is

the address of the current instruction plus 4 bytes.
for B, BL, CBNZ, and CBZ instructions,

the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0
for all other instructions that use labels,

In A64 code, PC
the value of the PC is
the address of the current instruction.

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

w4
+4

32-bit word alignment

3 +2 +1 +0 execute
o +7 +6 +5 +4 decode
e #1410 +9 +8 fetch
word addresses
SINRRRRNARRRNNAAR RN
addresses of least significant byte not used
of a 4-byte word (little endian)
16-bit halfword alignment
- +1 +0 execute
+2 (
P +3 +2 decode
2 S +5 +4 fetch
half-word addresses
SINRRRRNARRRNNRAR NN
addresses of least significant byte not used

of a 2-byte halfword (little endian)

PC Relative 26

Addressing

Young Won Lim
11/23/24



The values of PC in ARM and Thumb states

. . f s s , h | f , which s
In hardware, PC in Thumb state can point any halfword orB, BL CBNz, €82 e e alort At aarammer can access
PC i halfword *
when a programmer access PC, can pont o any hatwer x Halfword
it value can be e
e (PC+4)

* * Word
any halfword address * * view
for B, BL, CBNZ, CBZ instructions

e (PC + 4) with bit[0]=0
for all other instructions the value of PC, which a programmer can access,
only a WOI’d address can only be a word address
for all other instructions PC can pointto any halfword X T
* view
word aligned with bit[1]=0
* Word
* view

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

PC Relative 27 Young \i\i(;gg)lfzrz
Addressing



The values of PC in ARM and Thumb states

LDR r4,=data+4*n ; N 1s an assembly-time variable
; code
MOV pc, lr
data DCD value_0
; n-1 DCD directives
DCD value_n ; datat4*n points here

; more DCD directives

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

PC Relative 28 Young W(;n |7im
Addressing 11/23/24



The values of PC in ARM and Thumb states

int f,qg,y;//global variables
int sum(int a, int b){
return (a+b);

b
int main(void){
f =2
g = 3;
y = sum(f, g);
return vy,
b

00008390 <sum>:
int sum(int a, int b) {
return (a + b);
}
8390: e0800001 add rO, ro, ri
8394: el2fffle bx 1r
00008398 <main>:
int f, g, y; // global variables
int sum(int a, int b);
int main(void) {
8398: €92d4008 push {r3, 1r}
f =2
839c: e3a00002 mov rO, #2
83a0: e59f301c ldr r3, [pc, #28] ; 83c4 <main+O0x2c>
83a4: e5830000 str ro, [r3]
g =3
83a8: e€3a01003 mov rl1, #3
83ac: e59f3014 1dr r3, [pc, #20] ; 83c8 <main+0x30>
83b0: e5831000 str ri, [r3]
y = sum(f,qg);
83b4: ebfffff5 bl 8390 <sum>
83b8: e59f300c ldr r3, [pc, #12] ; 83cc <main+0x34>
83bc: e5830000 str ro, [r3]
return y;
}
83c0: e8bd8008 pop {r3, pc}
83c4: 00010570 .word Ox00010570
83c8: 00010574 .word Ox00010574
83cc: 00010578 .word Ox00010578

https://stackoverflow.com/questions/24091566/why-does-the-arm-pc-register-point-to-the-instruction-after-the-next-one-to-be-e

PC Relative
Addressing

ZZS) Young Won Lim
11/23/24



The values of PC in ARM and Thumb states

see the above LDR's PC value--here
is used to load variable f,g,y's address to r3.

83a0: e59f301c ldr r3, [pc, #28];83c4 main+0x2c
PC=0x83c4-28=0x83a8-0x1C = 0x83a8

PC's value is just the current executing instruction's next's next instruction.
as ARM uses 32bits instruction, but it's using byte address,
so + 8 means 8bytes, two instructions' length.

so attached ARM archi's 5 stage
pipe line fetch, decode, execute, memory, writeback

ARM's 5 stage pipeline

the PC register is added by 4 each clock,

so when instruction bubbled to execute--the current instruction,
PC register's already 2 clock passed!

now it's + 8. that actually means:

PC points the "fetch" instruction, current instruction
means "execute" instruction, so PC means the next next to be executed.

https://stackoverflow.com/questions/24091566/why-does-the-arm-pc-register-point-to-the-instruction-after-the-next-one-to-be-e

PC Relative 30 Young W(;n |7im
Addressing 11/23/24



References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial C

[2] http://blog.bobuhiroll.net/2014/01-13-baremetal.html

[3] http://www.valvers.com/open-software/raspberry-pi/

[4] https://lwww.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

PC Relative 31 Young W(;n |7im
Addressing 11/23/24


http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

