
Young Won Lim
12/26/24

Branch and Return Methods

Branch and Return
Methods

2 Young Won Lim
12/26/24

 Copyright (c) 2024 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Branch and Return
Methods

3 Young Won Lim
12/26/24

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Branch and Return
Methods

4 Young Won Lim
12/26/24

Branch and Return Instructions

Branch and Return
Methods

5 Young Won Lim
12/26/24

R8

R9

R10

R11

R12

ARM vs. Thumb programmer’s models

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

● 16 + 1 = 17 normal registers

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

CPSR

ARM state Thumb state

● 11 + 1 = 12 normal registers

ARM state

Thumb state

Branch and Return
Methods

6 Young Won Lim
12/26/24

ARM Register Sets (2-1)

https://www.embedded.com/introduction-to-arm-thumb/

● The biggest register difference involves the SP register.

● the Thumb state

unique stack mnemonics (PUSH, POP)

● the ARM state.

no such stack mnemonics (PUSH, POP)

● PUSH, POP instructions assume

the existence of a stack pointer (R13)

● PUSH, POP instructions translate

into load and store instructions

in the ARM state.

Branch and Return
Methods

7 Young Won Lim
12/26/24

PUSH and POP Thumb instructions (1)

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

PUSH stores registers on the stack,

with the lowest numbered register
using the lowest memory address

and the highest numbered register
using the highest memory address.

POP loads registers from the stack,

with the lowest numbered register
using the lowest memory address

and the highest numbered register
using the highest memory address.

the registers in the { } can be specified in any order,
but the order in which they appear on the stack is fixed

R2
R1
R0

high

low

R2

R1

R0

Full Descending Stack

1

2

3

high

low

Branch and Return
Methods

8 Young Won Lim
12/26/24

PUSH and POP Thumb instructions (2)

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

If you want these in a different order then you have to write
them in separate instructions in the assembly language.

The registers are stored in sequence,
the lowest-numbered register
to the lowest memory address (start_address),

through to the highest-numbered register
to the highest memory address (end_address)

 the start_address is the value of the SP
 minus 4 times the number of registers to be stored.

 Subsequent addresses are formed
 by incrementing the previous address by four.

 One address is produced for each register
 that is specified in .

 The end_address value is four less
 than the original value of SP.

 The SP register is decremented
 by four times the numbers of registers in .

R2
R1
R0

high

low

Full Descending Stack

1

2

3

end_address

start_address

high

low

Before

SP

start_address = SP – 4 * 3

end_address = SP – 4

new SP

After

Branch and Return
Methods

9 Young Won Lim
12/26/24

PUSH and POP Thumb instructions (3)

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

So according to the above explanations,
the ordering of registers in one PUSH bracket
doesn't matter.

PUSH {R0, R1, R2}
PUSH {R2, R1, R0}
PUSH {R1, R2, R0}

all would result in the some ordering in the stack

the lowest / highest numbered register (R0/R2)
uses the lowest / highest (stack) memory address

if a single PUSH instruction has
multiple registers in the bracket,

looks like sorted pushing actions

first, PUSH R2 to take the highest address,
followed by PUSH R1 and
ended with PUSH R0 to take the lowest address

but bit mask is actually used in implementation

R2
R1
R0

high

low

R2

R1

R0

PUSH {R0, R1, R2}

PUSH R2
PUSH R1
PUSH R0

PUSH {R2, R1, R0}

PUSH {R1, R2, R0}

Full Descending Stack

1

2

3

1

2
3

all equivalent instructions

high

low

Branch and Return
Methods

10 Young Won Lim
12/26/24

PUSH and POP Thumb instructions (4)

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

if R2 get pushed last and popped first in a LIFO stack
 or SP pointing R2
 or R2 takes the lowest stack address,

there is no single PUSH bracket statement

but three separate PUSH instructions must be used

PUSH R0
PUSH R1
PUSH R2

If you look at assembled hex/binary,
you'll find that push with same registers
but different order encode to the same instruction.

That will be related to instruction encoding,
because it's pretty much a bitmask of registers

PUSH R0
PUSH R1
PUSH R2

1

2
3

No single PUSH
Instruction is possible

R0
R1
R2

high

low

R2

R1

R0

Full Descending Stack

1

2

3

high

low

Branch and Return
Methods

11 Young Won Lim
12/26/24

PUSH and POP Thumb instructions (5)

http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf

The instructions in this group allow registers 0-7
and optionally LR to be pushed onto the stack,

and registers 0-7 and optionally PC
to be popped off the stack.

The stack is always assumed to be Full Descending.

L R
0 0 PUSH { Rlist }
0 1 PUSH { Rlist, LR }
1 0 POP { Rlist }
1 1 POP { Rlist, PC }

PUSH {R0-R4,LR}
; Store R0,R1,R2,R3,R4 and R14 (LR) at the stack
; pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC}
; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

1 0 1 1 L 1 0 R Rlist

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load/Store bit
0 - Store to memory
1 - Load from memory

PC/LR bit
0 - Do not store LR/load PC
1 - Store LR/Load PC

0 0 0 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 1

0 1 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 1

Branch and Return
Methods

12 Young Won Lim
12/26/24

PUSH and POP Thumb instructions (6)

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

.thumb

push {r0,r1,r2}
push {r2,r1,r0}
push {r0}
push {r1}
push {r2}

Disassembly of section .text:

00000000 <.text>:
 0: b407 push {r0, r1, r2}
 2: b407 push {r0, r1, r2}
 4: b401 push {r0}
 6: b402 push {r1}
 8: b404 push {r2}

in the push instruction the lower 8 bits are a register list/mask.
So the 7 in b407 indicates the three registers r0,r1,r2.

the hardware goes from bit 7 to bit 0 if set then push that register

If you want these in a different order then you have to write
them in separate instructions in the assembly language.

0 0 0 0 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 0

b 4 0 7

R2
R1
R0

high

low

Full Descending Stack

1

2

3

R2
R1
R0

1

2

3

R0
R1
R1

1

2

3

high low

the order of PUSH

PUSH R2
PUSH R1
PUSH R0
PUSH R2
PUSH R1
PUSH R0

in hardware

Branch and Return
Methods

13 Young Won Lim
12/26/24

ARM Register Sets (2-2)

https://www.embedded.com/introduction-to-arm-thumb/

● The CPSR register holds
• processor mode bits (user or exception flag)
• interrupt mask bits
• condition codes and
• Thumb status bit

● The Thumb status bit (T) indicates
the processor’s current state:
• 0 for ARM state (default)
• 1 for Thumb.

● Although other bits in the CPSR may be modified in
software, it’s dangerous to write to T directly;
• the results of an improper state change are

unpredictable.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

N Negative flag
Z Zero flag
C Carry flag
V Overflow flag

To disable Interrupt (IRQ), set I
To disable Fast Interrupt (FIQ), set F

USR User mode
FIQ Fast Interrupt mode
SVC Supervisor mode
ABT Abort mode
UND Undefined mode
SYS System mode

Branch and Return
Methods

14 Young Won Lim
12/26/24

Branch instructions

B, BL,
BX, BLX

https://developer.arm.com/documentation/dui0489/c/arm-and-thumb-instructions/branch-and-control-instructions/b--bl--bx--blx--and-bxj

BL and BLX copy the return address into LR (R14)

B, BL,
BX, BLX BX and BLX can change the processor state

Branch and Return
Methods

15 Young Won Lim
12/26/24

Branch instructions and operand types

https://www.embedded.com/introduction-to-arm-thumb/

● B {cond} label
● B {cond} Rm

● BX {cond} label
● BX {cond} Rm

● B {cond} label
● BL {cond} label
● BLX {cond} label

● BX {cond} Rm
● BLX {cond} Rm

● BL {cond} label
● BL {cond} Rm

● BLX {cond} label
● BLX {cond} Rm

Branch
Branch with Link
Brand and eXchange
Brand with Link and eXchange

● B {cond} label
● BX {cond} label

● BL {cond} label
● BLX {cond} label

● B {cond} Rm
● BX {cond} Rm

● BL {cond} Rm
● BLX {cond} Rm

Branch and Return
Methods

16 Young Won Lim
12/26/24

B and BL instructions (1)

https://www.embedded.com/introduction-to-arm-thumb/

● B {cond} label
● B {cond} Rm

● BL {cond} label
● BL {cond} Rm

● cond is an optional condition code
● label is a program-relative expression

● The B instruction
● causes a branch to label.

● The BL instruction
● copies the address of the next instruction

into r14 (lr, the link register)
● causes a branch to label.

Branch
Branch with Link
Brand and eXchange
Brand with Link and eXchange

Branch and Return
Methods

17 Young Won Lim
12/26/24

B and BL instructions (2)

https://www.embedded.com/introduction-to-arm-thumb/

● machine-level B and BL instructions
have a range of ±32Mb
from the address of the current instruction.

● However, you can use these instructions
even if label is out of range.

● Often you do not know
where label is placed by the linker.

● When necessary, the ARM linker
adds veneer code to allow longer branches

224 Byte = 24 MB = 16 MB

+/- 8 MB (forward, backward)

+/- 32 MB (2 lsb’s : 4 bytes alignment)

Branch and Return
Methods

18 Young Won Lim
12/26/24

B and BL instructions (3)

https://community.arm.com/support-forums/f/architectures-and-processors-forum/3061/range-of-bl-instruction-in-arm-state

● The ARM BL instruction has a 24-bit immediate for encoding the branch offset

● this would give you a range of 224 bytes, or +/-8MB
(given that the immediate allows forwards or backwards).

● all ARM instructions are 4 bytes long,
and must be size aligned.

● no need to consider the two least significant bits
of the address

● taking our branch range from +/-8MB to +/-32MB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond Offset1 0 1 L (11)

0 24-bit immediate 224 Byte = 24 MB +/- 8 MB
+/- 32 MB

1

B

BL

224 Byte = 24 MB = 16 MB

+/- 8 MB (forward, backward)

+/- 32 MB (2 lsb’s : 4 bytes alignment)

Branch and Return
Methods

19 Young Won Lim
12/26/24

BX and BLX instructions (1)

https://www.embedded.com/introduction-to-arm-thumb/

● BX {cond} label
● BX {cond} Rm

● BLX {cond} label
● BLX {cond} Rm

● cond is an optional condition code
● label is a program-relative expression
● Rm is a register containing an address to branch to

● The BX instruction
● causes a branch to the address contained in Rm
● changes the instruction set, if required:

● The BLX instruction
● copies the address of the next instruction

into r14 (lr, the link register)
● causes a branch to label.
● can change the instruction set

Branch
Branch with Link
Brand and eXchange
Brand with Link and eXchange

Branch and Return
Methods

20 Young Won Lim
12/26/24

BX and BLX instructions (2)

https://www.embedded.com/introduction-to-arm-thumb/

Branch
Branch with Link
Brand and eXchange
Brand with Link and eXchange

with label
always changes the state.
ARM state → Thumb state
Thumb state → ARM state

with Rm
Rm[0] = 0 → to ARM state
Rm[0] = 1 → to Thumb state

● B {cond} label
● B {cond} Rm

● BX {cond} label
● BX {cond} Rm

● BL {cond} label
● BL {cond} Rm

● BLX {cond} label
● BLX {cond} Rm

Both ARM state
and Thumb state provide
B, BL, BX, BLX

Branch and Return
Methods

21 Young Won Lim
12/26/24

B, BL, BX, and BLX instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond Offset1 0 1 L

Branch

R14 := PC+8; PC := Offset

0

1

Offset1 0 1 H

Branch with Link and Exchange PC := Offset

1 1 1 1

always changes the state.
ARM state → Thumb state
Thumb state → ARM state

cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

Branch and Exchange PC := Rn;

cond 0 0 0 1 0 0 1 0 0 0 1 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

Branch with Link and Exchange R14 := PC+8; PC := Rn;

Rn[0] = 0 → to ARM state
Rn[0] = 1 → to Thumb state

Rn[0] = 0 → to ARM state
Rn[0] = 1 → to Thumb state

B{<cond>} <address>

BL{<cond>} <address>Branch with Link

PC := Offset

BX{<cond>} Rn

BLX{<cond>} Rn

BLX{<cond>} <address>

Branch and Return
Methods

22 Young Won Lim
12/26/24

Branch instructions – changing the state

https://developer.arm.com/documentation/dui0489/c/arm-and-thumb-instructions/branch-and-control-instructions/b--bl--bx--blx--and-bxj

BX Rn changes the state depending on bit[0] of Rn:
BLX Rn

Offset1 0 1 H1 1 1 1

cond 0 0 0 1 0 0 1 0 0 0 0 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

cond 0 0 0 1 0 0 1 0 0 0 1 1 Rn1 1 1 1 1 1 1 1 1 1 1 1

 Rn[0] = 0 → ARM state
 Rn[0] = 1 → Thumb state

ARM state → Thumb state
Thumb state → ARM state

BLX label always changes the state.

Branch and Exchange PC := Rn; BX{<cond>} Rn

Branch with Link and Exchange R14 := PC+8; PC := Rn; BLX{<cond>} Rn

Branch with Link and Exchange PC := OffsetBLX{<cond>} <address>

Branch and Return
Methods

23 Young Won Lim
12/26/24

BLX in ARM Architecture v5

In ARM Architecture v5
both ARM and Thumb state

provide a BLX instruction

that will call a subroutine addressed by a register

and correctly sets the return address
to the sequentially next value of the program counter.

/IHI0042E_aapcs.pdf

Branch and Return
Methods

24 Young Won Lim
12/26/24

Switching the state (1) BX or BLX

https://www.embedded.com/introduction-to-arm-thumb/

● There are several ways to enter or leave
the Thumb state properly.

● The usual method is
via the Branch and Exchange (BX) instruction.

● also Branch, Link, and Exchange (BLX)
if you’re using an ARM with version 5 architecture.

● During the branch, the CPU examines
the least significant bit (lsb) of the destination address
to determine the new state.

BX R0 ; to ARM state
BLX R0 ; to ARM state

0R0

BX R0 ; to Thumb state
BLX R0 ; to Thumb state

1R0

Branch and Return
Methods

25 Young Won Lim
12/26/24

Switching the state (2) Exception Handler

https://www.embedded.com/introduction-to-arm-thumb/

● When an exception occurs, the processor
automatically begins executing in ARM state
at the address of the exception vector.

● So another way to change state is
to place your 32-bit code in an exception handler.

● If the CPU is running in Thumb state
when that exception occurs, you can count on it
being in ARM state within the handler.

● If desired, you can have the exception handler
put the CPU into Thumb state via a branch.

Branch and Return
Methods

26 Young Won Lim
12/26/24

Switching the state (3) T bit in the SPSR

https://www.embedded.com/introduction-to-arm-thumb/

The final way to change the state is
via a return from exception.

● When returning from the processor’s exception mode,
the saved value of T in the SPSR register is used
to restore the state.

● This T bit can be used, for example,
by an operating system
to manually restart a task in the Thumb state –
if that’s how it was running previously.

Branch and Return
Methods

27 Young Won Lim
12/26/24

Branch and Exchange (1)

https://www.embedded.com/introduction-to-arm-thumb/

● the Branch and Exchange (BX) instruction.
● also Branch, Link, and Exchange (BLX)

if you’re using an ARM with version 5 architecture.

● During the branch, the CPU examines
the least significant bit (lsb) of the destination address
to determine the new state.

BX R0 ; to ARM state
BLX R0 ; to ARM state

0R0

BX R0 ; to Thumb state
BLX R0 ; to Thumb state

1R0

● B {cond} label
● B {cond} Rm

● BX {cond} label
● BX {cond} Rm

● BL {cond} label
● BL {cond} Rm

● BLX {cond} label
● BLX {cond} Rm

with label
always changes the state.
ARM state → Thumb state
Thumb state → ARM state

with Rm
Rm[0] = 0 → to ARM state
Rm[0] = 1 → to Thumb state

not used

address of a 32-bit word in Rm

Branch and Return
Methods

28 Young Won Lim
12/26/24

Branch and Exchange (2)

https://www.embedded.com/introduction-to-arm-thumb/

● Since all ARM instructions will align themselves
on either a 32- or 16-bit boundary,
the lsb of the address is not used in the branch directly.

● if the lsb is 1 when branching from ARM state,
the processor switches to Thumb state
before it begins executing from the new address;

● if the lsb is 0 when branching from Thumb state,
the processor switches back to ARM state it goes.

BX Rm
 BLX Rm

; destination address in the regsiter Rm
 If Rm[0] is 0, to ARM state.
 If Rm[0] is 1, to Thumb state.

 BLX lable
; destination address is the PC-relative lable expression

 always change: (ARM → Thumb, Thumb → ARM)

● B {cond} label
● B {cond} Rm

● BX {cond} label
● BX {cond} Rm

● BL {cond} label
● BL {cond} Rm

● BLX {cond} label
● BLX {cond} Rm

with label
always changes the state.
ARM state → Thumb state
Thumb state → ARM state

with Rm
Rm[0] = 0 → to ARM state
Rm[0] = 1 → to Thumb state

Branch and Return
Methods

29 Young Won Lim
12/26/24

Entering and leaving the Thumb state (1)

● several ways to enter or leave the Thumb state properly.

● the usual method is via the BX (Branch and EXchange) instruction.
● also BLX (Branch, Link, and EXchange) with version 5 architecture.

● during the branch, the CPU examines
the lsb of the destination address in a register operand
to determine the new state.

●

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

with Rm
Rm[0] = 0 → to ARM state
Rm[0] = 1 → to Thumb state

● BX {cond} Rm
● BLX {cond} Rm

Branch and Return
Methods

30 Young Won Lim
12/26/24

Entering and leaving the Thumb state (2)

● all ARM instructions will align themselves
on either a 32- or 16-bit boundary →

● the lsb of the destination address
is not used in the branch directly.

● if the lsb is 1 when branching from ARM state,
the processor switches to Thumb state
before it begins executing from the new address;

● if the lsb is 0 when branching from Thumb state,
back to ARM state it goes.

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

32-bit word alignment

16-bit halfword alignment

word addresses

half-word addresses

not used

not used

+4

+4

+2

+2

+0+1+2+3

+4+5+6+7

+8+9+10+11

+0+1

+2+3

+4+5

addresses of least significant byte
of a 4-byte word (little endian)

addresses of least significant byte
of a 2-byte halfword (little endian)

Branch and Return
Methods

31 Young Won Lim
12/26/24

32-bit / 16-bit alignment

Since all ARM instructions have
either a 32- or 16-bit alignment

the LSB of the address is not used in the branch directly.

32-bit (4 bytes) word - the least significant 2 bits of the target address are not used
16-bit (2 bytes) word - the least significatn 1 bit of the target address is not used

 can use the the least significant bit is used to change the state (ARM ↔ Thumb)

https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf

32-bit word alignment 16-bit halfword alignment

word addresses half-word addresses

not used not used

+4

+4

+2

+2

+0+1+2+3

+4+5+6+7

+8+9+10+11

+0+1

+2+3

+4+5

addresses of least significant byte
of a 4-byte word (little endian)

addresses of least significant byte
of a 2-byte halfword (little endian)

Branch and Return
Methods

32 Young Won Lim
12/26/24

PC (Program Count) R15 Register

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture1/lecture1-4-2.html

The Program Counter (or PC) is
a register inside the microprocessor
that stores the memory address
of the next instruction to be executed.

In ARM processors, the Program Counter is
a 32-bit register which is also known as R15.

The processor first fetches the instruction
from the address stored in the PC.

The fetched instruction is then decoded
so that it can be interpreted by the microprocessor.

Once decoded, the instruction can then be executed
and the PC incremented so that it contains
the address of the next instruction.

the fetch-decode-execute cycle.

fetch

decode

execute

Branch and Return
Methods

33 Young Won Lim
12/26/24

PC and 3-stage pipeline (1)

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture1/lecture1-4-2.html

Read Instruction pointed at
By Program Counter

Decode the Instruction

Execute the Instruction

Increment Program Counter
To point at next instruction

fetch decode execute
fetch decode execute

fetch decode execute

fetch

decode

execute

3 stage pipeline execution

Execute a current instruction
Decode the next instruction
Fetch the next’s next instruction

Branch and Return
Methods

34 Young Won Lim
12/26/24

PC and 3-stage pipeline (2)

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture1/lecture1-4-2.html

fetch decode execute
fetch decode execute

fetch decode execute

3 stage pipeline execution

Execute a current instruction
Decode the next instruction
Fetch the next’s next instruction

the current instruction is being executed

the next instruction is being decoded

the next’s next instruction is being fetched

when PC is accessed during execution,
PC must have to be increased
to fetch the next’s next instruction

PC + 8 for ARM instructions

PC + 4 for Thumb instructions

the current
time slot

Branch and Return
Methods

35 Young Won Lim
12/26/24

Incrementing PC (1)

https://azeria-labs.com/arm-data-types-and-registers-part-2/

The Program Counter is automatically incremented
by the size of the instruction executed.

● 4 byte size in ARM state
● 2 byte size in Thumb state.

when a branch instruction is being executed,
the PC holds the destination address.

during execution, PC stores

the address of the current instruction plus
● 8 (two ARM instructions) in ARM state,
● 4 (two Thumb instructions) in Thumb(v1) state.

Thus the content of PC
● a word address in ARM state
● a halfword address in Thumb state

This is different from x86 where PC always points
to the next instruction to be executed.

Branch and Return
Methods

36 Young Won Lim
12/26/24

Incrementing PC (2)

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecture1/lecture1-4-2.html

memory addresses are given in bytes (byte addresses)

memory is usually accessed by a word and
aligned on word boundaries. (word addresses)
for a high performance

but also can be accessed by a byte or a halfword
with a performance loss

in ARM processors,
all ARM instructions take up one word (4 bytes).
all Thumb instructions take up one halfword (2 bytes).

incrementing the PC for the next instruction corresponds to

in the ARM state
PC + 4 (in a word address)

in the Thumb state
PC + 2 (in a halfword address)

32-bit word alignment

16-bit halfword alignment

word addresses

half-word addresses

not used

not used

+4

+4

+2

+2

+0+1+2+3

+4+5+6+7

+8+9+10+11

+0+1

+2+3

+4+5

addresses of least significant byte
of a 4-byte word (little endian)

addresses of least significant byte
of a 2-byte halfword (little endian)

ARM State

Thumb State

ARM state instruction

ARM state instruction

ARM state instruction

Thumb state instruction

Thumb state instruction

Thumb state instruction

0 0

0

Branch and Return
Methods

37 Young Won Lim
12/26/24

The PC values in ARM and Thumb states

In A32 code, PC + 8
the value of the PC is
the address of the current instruction plus 8 bytes.

In T32 code: PC + 4
the value of the PC is

the address of the current instruction plus 4 bytes.
 for B, BL, CBNZ, and CBZ instructions,

the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0

 for all other instructions that use labels,

In A64 code, PC
the value of the PC is
the address of the current instruction.

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

32-bit word alignment

16-bit halfword alignment

word addresses

half-word addresses

not used

not used

+4

+4

+2

+2

+0+1+2+3

+4+5+6+7

+8+9+10+11

+0+1

+2+3

+4+5

addresses of least significant byte
of a 4-byte word (little endian)

addresses of least significant byte
of a 2-byte halfword (little endian)

fetch

decode

execute

fetch

decode

execute

Branch and Return
Methods

38 Young Won Lim
12/26/24

The PC values in Thumb states (1)

In hardware, PC in Thumb state can point any halfword

when a programmer access PC in Thumb state,
during the execution stage of the pipeline,
its value can be

● (PC + 4)

any halfword address of the next’s next instruction
for B, BL, CBNZ, CBZ instructions

● (PC + 4) with bit[0]=0

only a word address of the next’s next instruction
for all other instructions

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

word aligned with bit[1] = 0

the value of PC, which a programmer can access,
can be any halfword address

for B, BL, CBNZ, CBZ

for all other instructions

Halfword
view

Halfword
view

Word
view

Word
view

PC can point to any halfword

PC can point to any halfword

the value of PC, which a programmer can access,
can only be a word address

Branch and Return
Methods

39 Young Won Lim
12/26/24

The PC values in Thumb states (2)

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

word aligned with bit[1] = 0

the value of PC, which a programmer can access,
can be any halfword address

for B, BL, CBNZ, CBZ

for all other instructions

Halfword
view

Halfword
view

Word
view

Word
view

the value of PC, which a programmer can access,
can only be a word address

word aligned with bit[1] = 0

the value of PC, which a programmer can access,
can be any halfword address

for B, BL, CBNZ, CBZ

for all other instructions

Halfword
view

Halfword
view

Word
view

Word
view

current instruction

the value of PC, which a programmer can access,
can only be a word address

next’s next instruction
current instruction

next’s next instruction

current instruction

next’s next instruction
current instruction

next’s next instruction

Branch and Return
Methods

40 Young Won Lim
12/26/24

Return from a procedure (1)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

ARM is unusual among the processors
by having the program counter available
as a “general purpose” register.

Most other processors have the program counter hidden,
and its value will only be disclosed as the return address
when calling a function.

If you want to modify it, a jumping instruction is used.

For example, on the x86, the program counter
is called the instruction pointer,
and is stored in eip,
which is not an accessible register.

After a function call, eip is pushed onto the stack,
at which point it could be examined.

Return is done through the ret instruction
which pops the return address off the stack,
and jumps there.

Another example: on the MIPS,
the program counter is stored into register 31
after executing a JALR instruction,
which is used for function calling.

The value in there can be examined,
and a return is a register jump JR to that register.

Branch and Return
Methods

41 Young Won Lim
12/26/24

Return from a procedure (2)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

ARM’s unusual design allows many,
many ways of returning from functions.

But first, we must understand
how function calls work on the ARM.

On ARM, the program counter is register 15,
or r15, also called pc.

The instruction to call a function is
bl (for immediate offsets, a label operand)
or blx (for addresses in registers, a register operand).

These instructions stores the return address
in r14, called the link register, or lr.

To return, we must put this value back
into pc.

B, BL,
BX, BLX

BL and BLX copy
the return address
into LR (R14)

 LR
(R14)

return
address

Branch and Return
Methods

42 Young Won Lim
12/26/24

Return from a procedure (3)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Method 1

When writing non-leaf functions, i.e.
functions that calls other functions,
the value of lr must be preserved,
since calling another function will overwrite it.

The most common way is
to store it on the stack.

On the ARM, push and pop instructions

use push and pop to preserve
the registers we modify.

For example, if we want
to preserve r3, r4, and lr,
we can write push {r3, r4, lr}.

A normal function will look like:

push {r3, r4, lr} ; save registers.

; function body.

pop {r3, r4, pc} ; restore registers
; and return (pc←lr)

use push and pop to restore all the registers,
except putting what was lr
when we are doing pop into pc.

This will overwrite pc with the return address,
achieving the return.

Note that we could instead use r14
instead of lr and r15 instead of pc,
but this is less clear on the intent.

lr
r4
r3

high

low

PUSH LR
PUSH R4
PUSH R3

1

2
3

1

2
3

POP R3
POP R4
POP PC

push {r3, r4, lr} pop {r3, r4, pc}

equivalent
PUSH
sequence

equivalent
POP
sequence

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Branch and Return
Methods

43 Young Won Lim
12/26/24

Return from a procedure (4)

https://www.labs.cs.uregina.ca/301/ARM-subroutine/lecture.html

;;; Define Procedures

function1 PROC ; using PROC and ENDP for procedures
PUSH {R5, LR} ; save values in the stack

MOV R5,#8 ;set initial value for the delay loop

delay
SUBS R5, R5, #1
BNE delay

POP {R5, PC} ;pop out the saved value from the stack,
;check the value in the R5 and
;if it is the saved value

ENDP

;; ----------------

MOV R5, #9 ;; prepare for function call

 BL function1

Branch and Return
Methods

44 Young Won Lim
12/26/24

Return from a procedure (5)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Method 2

use an unconditional jump to register to return

useful in leaf functions
where lr needs not to be stored on the stack.

bx lr

this jumps to the address in lr,
setting pc to lr, and completing the return.

Method 3

Similar in rationale to method 2,
ARM lets you manipulate the program counter
as you would any other register.

mov pc, lr

This copies lr into pc, also completing the return.

Branch and Return
Methods

45 Young Won Lim
12/26/24

Return from a procedure (6)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Method n

many other ways of copying the value
from one register into another

but as long as lr at the beginning of the function call
is goplaced into pc, a return is completed.

But please, use the most sensible ways to return.

This means you should prefer the first two,
depending on whether the function is a leaf.

As a distant third, use method 3 (mov pc, lr).

pop {r3, pc} bx lr

mov pc, lr

leaf functionnon-leaf function

push {r3, pc}

Branch and Return
Methods

46 Young Won Lim
12/26/24

Return from a procedure (6)

https://www.riscosopen.org/forum/forums/11/topics/3986`

subroutines in an ARM assembler code in BASIC.
The subroutines are said to be ended with

MOVS R15,R14 MOVS PC,LR

call for each subroutine starting with the label:

.some_subroutine

But when I want to end the routine
that calls subroutines within it,
if I use:

MOV R15,R14 MOV PC,LR

the program tends to hang rather than
to exit from that routine.

OS_Exit cannot be used
because it brings the entire program
to an abrupt conclusion instead of
continuing to the next BASIC line.

R13 (SP)

R14 (LR)

R15 (PC)

Branch and Return
Methods

47 Young Won Lim
12/26/24

MOVS instruction

https://developer.arm.com/documentation/ddi0597/2024-12/Base-Instructions/MOV--MOVS--immediate---Move--immediate--

MOV{S} Rd, Rm

MOVS Rd, #imm

MVNS Rd, Rm

S is an optional suffix.
If S is specified, the condition code flags
are updated on the result of the operation

Rd is the destination register.

Rm is a register.

Imm is any value in the range 0-255.

The MOV instruction copies the value of Rm into Rd.

The MOVS instruction performs the same operation
as the MOV instruction, but also updates the N and Z flags.

The MVNS instruction takes the value of Rm,
performs a bitwise logical negate operation on the value,
and places the result into Rd.

If S is specified, these instructions:

 update the N and Z flags according to the result

 do not affect the C or V flags.

Branch and Return
Methods

48 Young Won Lim
12/26/24

MOVS instruction

https://developer.arm.com/documentation/ddi0597/2024-12/Base-Instructions/MOV--MOVS--immediate---Move--immediate--

MOVS Rd, #imm

Move (immediate) writes an immediate value
to the destination register.

If the destination register is not the PC,
the MOVS variant of the instruction
updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings
where the PC is permitted as the destination register.

Arm deprecates any use of these encodings.

However, when the destination register is the PC:

1. MOV PC, #imm

The MOV variant of the instruction is an interworking branch,

see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

2. MOVS PC, #imm

The MOVS variant of the instruction
performs an exception return
without the use of the stack.

In this case:

 The PE branches to the address written to the PC,
and restores PSTATE from SPSR_<current_mode>.

 The PE checks SPSR_<current_mode>
for an illegal return event.

 The instruction is UNDEFINED in Hyp mode.

 The instruction is CONSTRAINED UNPREDICTABLE
in User mode and System mode.

* PE (Processing Element)

Branch and Return
Methods

49 Young Won Lim
12/26/24

Branches and Interworking (1)

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

When using Thumb, the system will typically have
both ARM and Thumb functions.

Even if you compile your application for Thumb,
you might still have to think about such things
as libraries and prebuilt binaries.

The core must know which instruction set
is to be used for the code being executed
after a branch, procedure call or return.

This interworking between instruction sets

When writing C code, the linker takes care of this for us,
but a little more care is required when porting assembly code.

The target instruction set state is determined
in different ways depending on the type of branch.

We can consider a number of different instructions:

● Function Return

MOV PC, LR BX LR

● Function Return from the Stack

LDMFD SP!, {registers, pc}
POP {<registers>, pc}

● Branch

B
BL

● PC modification

MOV PC, register BX register

● Function Call to Register address

MOV LR, PC BLX <register>
MOV PC, register

Branch and Return
Methods

50 Young Won Lim
12/26/24

Branches and Interworking (2)

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

Function return

Legacy code might use the MOV PC, LR instruction.

This is unsafe for systems that contain a mix of ARM
and Thumb code and must be replaced by BX LR
for code running on all later architectures.

Function return from the stack

This is done using the LDMFD SP!, {registers, pc} instruction
that will continue to work correctly in the ARMv7-A architecture,
although a newer, equivalent form, POP {<registers>, pc}
is also available.

This is used when registers that must be preserved
by the function are PUSHed at the start of the function.

Branch

A simple B instruction will work in the same fashion
on all ARM architectures.

If ARM and Thumb instructions are mixed
in a single source file (this is unusual),
there is no automatic instruction set switch for local symbols.

The assembler might introduce a veneer depending
on whether it knows that the destination is
in a different instruction set and
is definitely a code symbol
(such as a .type <symbol>, %function or .thumb_func).

Because a symbol appears in a code section
it is not assumed to be a code symbol
unless specifically tagged in this way.

If the label is in a different file, the linker will take care of
any necessary instruction set change.

Similar considerations apply for a function call (BL).

Branch and Return
Methods

51 Young Won Lim
12/26/24

Branches and Interworking (3)

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

PC modification

Care might be required with other instructions
that modify the PC
and produce a branch effect.

For example, MOV PC, register
must be replaced with BX register
in systems that contain both ARM and Thumb code.

Function call to register address

If code contains a sequence like MOV LR, PC
followed by MOV PC, register,

this will not work in a system that has both ARM and Thumb code.
You must replace it with the single instruction BLX <register>.

Branch and Return
Methods

52 Young Won Lim
12/26/24

Branches and Interworking (4)

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

When a destination or return address is variable
or calculated at run-time, take care to appropriately set
the Thumb bit (bit [0]) in the address correctly

and to use the correct type of branch,
to make sure that the call (and return, if applicable)
switches instruction set appropriately.

If an external label or function defined in another object
is referenced, the linker will produce an address
with the Thumb bit (bit [0]) set appropriately.

However, if you reference a symbol internal to the object,
things are more complicated.

For C functions, or code tagged as Thumb, bit [0] will be
set appropriately, but it will not be set appropriately
for other symbols.

In particular, GNU Assembler local labels will not
have the Thumb bit set appropriately,
nor will the GNU current assembly location symbol ".".

Therefore, when coding in assembler,
if an address will be passed
to any other function or object,

for example,
as a return address, method address or callback,
you must handle the Thumb bit setting yourself,
setting bit [0] of the address where required.

Branch and Return
Methods

53 Young Won Lim
12/26/24

Interworking (1)

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

When the core executes ARM instructions,
it is said to be operating in ARM state.

When it is operating in Thumb state,
it is executing Thumb instructions.

A core in a particular state can only execute instructions
from that instruction set.

We must make sure that the core does not receive instructions
of the wrong instruction set.

Each instruction set includes instructions
to change processor state.

ARM and Thumb code can be mixed,
if the code conforms to the requirements of the ARM
and Thumb Procedure Call Standards.

Compiler generated code will always do so,
but assembly language programmers
must take care to follow the specified rules.

Branch and Return
Methods

54 Young Won Lim
12/26/24

Interworking (2)

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

Selection of processor state is controlled
by the T bit in the CPSR.

When T is 1, the processor is in Thumb state.
When T is 0, the processor is in ARM state.

However, when the T bit is modified,
it is also necessary to flush the instruction pipeline
(to avoid problems with instructions
being decoded in one state
and then executed in another).

Special instructions are used to accomplish this.

These are BX (Branch with eXchange) and
BLX (Branch and Link with eXchange).
LDR of PC and POP/LDM of PC also have this behavior.

In addition to changing the processor state
with these instructions, assembly programmers must
also use the appropriate directive
to tell the assembler to generate code
for the appropriate state.

Branch and Return
Methods

55 Young Won Lim
12/26/24

Interworking (3)

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

The BX or BLX instruction branches to an address
contained in the specified register,
or an offset specified in the opcode.

The value of bit [0] of the branch target address determines
whether execution continues in ARM state or Thumb state.

Both ARM (aligned to a word boundary)
and Thumb (aligned to a halfword boundary) instructions
do not use bit [0] to form an instruction address.

This bit can therefore safely be used
to provide the additional information
about whether the BX or BLX instruction
should change the state to ARM (address bit [0] = 0)
or Thumb (address bit [0] = 1).

The BL label will be turned into a BLX label as appropriate
at link time if the instruction set of the caller
is different from the instruction set of label,
assuming that it is unconditional.

Branch and Return
Methods

56 Young Won Lim
12/26/24

Interworking (4)

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

A typical use of these instructions is
when a call from one function to another is made
using the BL or BLX instruction,
and a return from that function is made
using the BX LR instruction.

Alternatively, we can have a non-leaf function
that pushes the link register onto the stack
on entry and pops the stored link register
from the stack into the program counter, on exit.

Here, instead of using the BX LR instruction to return,
we have a memory load.

Memory load instructions that modify the PC
might also change the processor state
depending on the value of bit [0] of the loaded address.

Branch and Return
Methods

57 Young Won Lim
12/26/24

Return from a procedure (7)

https://www.riscosopen.org/forum/forums/11/topics/3986

.entry
 BL myfunction
 MOV PC, R14

.myfunction
 ; does nothing
 MOV PC, R14

This will fail because the exit address is in R14 on entry,
and the BL call trashes that, so your program cannot ever exit
as the return address is gone.

Branch and Return
Methods

58 Young Won Lim
12/26/24

Return from a procedure (8)

https://www.riscosopen.org/forum/forums/11/topics/3986

Consider:

.entry ; entry point, return address in R14
 BL myfunction ; call subroutine (puts return address in R14)
 MOV PC, R14 ; return to BASIC (R14 will come back here)

.myfunction
 ; does nothing
 MOV PC, R14 ; exit subroutine by jumping back to R14

If you follow through this code, you’ll see that the line
that it supposed to return to BASIC is the instruction following the BL,
which means R14 will point to it,
so it’ll just keep jumping to itself <cue spooky voice>forever!!!!!

Branch and Return
Methods

59 Young Won Lim
12/26/24

Return from a procedure (9)

https://www.riscosopen.org/forum/forums/11/topics/3986

How to fix this? You need to preserve R14 prior to it being used again.
Like this (assuming R13 is a valid stack, it is from BASIC):

.entry
 STR R14, [R13, #-4]! ; stack R14
 BL myfunction
 LDR PC, [R13], #4 ; unstack R14 directly into PC to exit

.myfunction
 ; does nothing
 MOV PC, R14

The weird looking offsets are to write-back R13
to support a full descending stack.

The STR’s “#-4]!” performs a decrement before action
(akin to the behaviour of STMFD/STMDB),
while the LDR’s “], #4” performs an increment after action
(akin to LDMFD/LDMIA).

This supports the type of stack used within RISC OS.

Branch and Return
Methods

60 Young Won Lim
12/26/24

Return from a procedure (10)

https://www.riscosopen.org/forum/forums/11/topics/3986

You might have come across it like this,
but these days it is inefficient to use a multiple register instruction
to store and load single registers (and indeed, ARM64 doesn’t support STM/LDM at all!).

This is for information purposes as you will probably come across code
that does this. It’s inefficient, so try to remember the STR/LDR version given above…

.entry
 STMFD R13!, {R14}
 BL myfunction
 LDMFD R13!, {PC}

.myfunction
 ; does nothing
 MOV PC, R14

Branch and Return
Methods

61 Young Won Lim
12/26/24

Return from a procedure (6)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

 Certainly, PUSH and POP,
which are the preferred forms now I think,
are used with single registers.

If your assembler supports PUSH and POP
then it should automatically switch
between LDM/STM and LDR/STR
depending on whether one or many registers
need to be transferred
(they are basically just aliases
for the corresponding load/store instruction).

Of course the downside is you can’t specify
the base register or whether writeback is used,
so they’re only good for basic stack interactions.

 I seem to remember at one time
being told that STM is decomposed into separate STR instructions
in more recent ARM versions.

Branch and Return
Methods

62 Young Won Lim
12/26/24

Return from a procedure (6)

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Possibly you’re thinking of AArch64 – there is no LDM/STM,
only the single register LDR/STR and double register LDP/STP.

Or maybe you’re thinking about the fact
that modern ARMs allow interrupts to occur
in the middle of an LDM/STM –
if this happens then the ARM will point the exception return address
at the LDM/STM so that the entire instruction is restarted
once the interrupt has been dealt with
(it also makes sure the base address register hasn’t been updated,
but the state of the other registers/memory locations
used by the instruction are undefined
– so LDM/STM is no longer atomic from a single-CPU perspective)

Branch and Return
Methods

63 Young Won Lim
12/26/24

Return from a procedure (11)

https://www.riscosopen.org/forum/forums/11/topics/3986

That’s what Entry and EXIT (and friends) are for:

 Entry → push a stack frame for procedure entry
(implicitly adds lr to the register list),
optionally reserving a block of local workspace on the stack

 EXIT → return from a procedure by popping the workspace + register list
from the most recent Entry
(i.e. the one located directly before it in the assembler listing)

 EntryS/EXITS → variants which save and restore some or all of the PSR

 EXITV/EXITVC/EXITVS → return with V flag in a specified state

 PullEnv/PullEnvS → pop the stack frame without returning from the procedure

 ALTENTRY → generate an Entry/EntryS equivalent to the most recent
(used when shared code can have multiple entry points)

 FRAMLDR/FRAMSTR → load/store specific registers from the stack frame
(calculates the correct offset, assuming you haven’t used Push/Pull
or adjusted SP manually)

If you’re observant you’ll also spot that there’s an ENTRY macro which is equivalent to Entry,
but that one isn’t used any more because objasm confuses it with the ENTRY directive.

Branch and Return
Methods

64 Young Won Lim
12/26/24

Subroutine call (1) BL (Branch and link) operation

Both the ARM and Thumb instruction sets contain
a primitive subroutine call instruction, BL target,
which performs a branch-with-link operation.

LR ← the return address
 the next value of the PC

PC ← the destination address target

LR[0] ← 1 if BL target was executed from Thumb state
LR[0] ← 0 if BL target was executed from ARM state

The result is to transfer control
to the destination address,
passing the return address in LR
as an additional parameter
to the called subroutine

Control is returned to the instruction following the BL
when the return address is loaded back into the PC

/IHI0042E_aapcs.pdf

BL target

LR

main

return
address

target

BX LR
“BL target” in Thumb state

then assign LR[0] = 1
(to return to Thumb code)

“BL target” in ARM state
then assign LR[0] = 0
(to return to ARM code)

Branch and Return
Methods

65 Young Won Lim
12/26/24

Subroutine call (2) BL vs. BX

BL target

LR

main

return
address

target

BX LR

BL target
BL R4 BX R4

BL has
no register operand

a programmer must
explicitly set the return
address in LR

BX target
BX has
no label operand

BL sets the return
address in LR

BX R4

LR

main

return
address

target

BX LR

R4

Branch and Return
Methods

66 Young Won Lim
12/26/24

Subroutine call (3) BX (Branch and eXchange) operation

A subroutine call can be synthesized
by any instruction sequence that has the effect:

LR[31:1] ← return address

LR[0] ← code type at return address
(0 ARM, 1 Thumb)

PC ← subroutine address

in ARM-state,
to call a subroutine addressed by R4
with control returning to the following instruction,

MOV LR, PC
BX R4

return:

/IHI0042E_aapcs.pdf

BX R4

LR

main

return
address

LR[31:1] ← the return address

LR[0] ← 0 return to ARM codes
LR[0] ← 1 return to Thumb codes

target

BX LR

R14 := PC+8;

PC := R4;

R4 := target+1;

R14 := PC+8;

R14[0] = 0;

R4

Branch and Return
Methods

67 Young Won Lim
12/26/24

Subroutine call (4) ARM vs. Thumb state

/IHI0042E_aapcs.pdf

BX R4

LR

main

return
address

target

BX LR

BX R4

LR

main

ARM
state

target

BX LR

Thumb
state

Thumb
state

ARM
state

return
address

R4 R4

LR[0] ← 0
return to
ARM codes

R4[0] ← 1
branch to
Thumb codes

LR[0] ← 1
return to
Thumb codes

R4[0] ← 0
branch to
ARM codes

Branch and Return
Methods

68 Young Won Lim
12/26/24

Subroutine call (5) the lsb of a destination address

MOV LR, PC
BX R4

target:

BX LR

LR ← the return address
 LR[31:1] ← the return address
 LR[0] ← 0 return to ARM codes

this will not work from Thumb state
because the instruction that sets LR
does not copy the Thumb-state bit to LR[0]

(LR[0] must be set to 1)

 LR[0] ← 1 return to Thumb codes

target:

BX LR

MOV LR, PC
BX R4

return
address

return
address

 LR[0] ← 0 return to ARM codes
 LR[0] ← 1 return to Thumb codes

ARM codes

Thumb codes Thumb codes

Thumb codes

MOV LR, PC
BX R4

return:

R14 := PC+8;

R14[0] = 0;

Branch and Return
Methods

69 Young Won Lim
12/26/24

BL thumb_sub (0)
BL thumb_sub (1)
ADD R1, #7

MOV R0, #5
ADD R1, PC, #1
BX R1

State changing example (1)

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

SUB_BRANCH:

BX R1
SUB_RETURN:

In ARM mode, PC indicates 2 instructions ahead

PC of 'ADD R1,PC,#1' is
the address of SUB_BRANCH

execution mode switch from ARM to Thumb
at the SUB_BRANCH and
the program will execute in Thumb mode.

And R1 is now 'SUB_BRANCH+1'
and by adding to 7
it will become 'SUB_BRANCH+8'.

'SUB_BRANCH+8' is
the address of 'SUB_RETURN' and
the program jumps to the address
of which LSB value is 0 and
the execution mode will become
from Thumb mode to ARM mode.

BL thumb_sub (0)BL thumb_sub (1)
ADD R1, #7

MOV R0, #5
ADD R1, PC, #1
BX R1

BX R1

Branch and Return
Methods

70 Young Won Lim
12/26/24

Branch and link operation (2)

/IHI0042E_aapcs.pdf

BX R1

R1

main

SUB_RETURN

BL thumb_sub

return
address

BX R1

SUB_BRANCH

thumb_sub

R1

SUB_BRANCH+1

SUB_BRANCH+8

LR return
a`ddress

BX LR

 R1[0] = 1 to thumb

 LR[0] = 1 to thumb

 R1[0] = 0 to ARM

target
address

thumb_ret

thumb_ret+1

Branch and Return
Methods

71 Young Won Lim
12/26/24

Branch and Exchange (2)

https://www.embedded.com/introduction-to-arm-thumb/

change into Thumb state, then back

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address of SUB_BRANCH+1

; assembler-specific instruction
; to switch to Thumb

SUB_BRANCH:
BL thumb_sub ; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN with bit 0 clear
BX R1
; assembler-specific instruction to switch to ARM
SUB_RETURN:

ARM
state

Thumb
state

Branch and Return
Methods

72 Young Won Lim
12/26/24

Branch and Exchange (3)

https://www.embedded.com/introduction-to-arm-thumb/

● the BX instruction example
to go from ARM to Thumb state and back.

● first switches to Thumb state (BX R1)
● R1[0] = 1 (because of +1)

● then calls a subroutine written

in Thumb code (BL thumb_sub)

● upon return from the subroutine (BX R1)
the system again switches back
to ARM state;

● R1[0] = 0 (because of +1+7= +8)

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address

; of SUB_BRANCH+1
; to switch to Thumb

SUB_BRANCH:
BL thumb_sub

; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN

; with bit 0 clear
BX R1 ; to switch to ARM
SUB_RETURN:

Branch and Return
Methods

73 Young Won Lim
12/26/24

Branch and Exchange (4)

https://www.embedded.com/introduction-to-arm-thumb/

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address

;of SUB_BRANCH+1
;to switch to Thumb

SUB_BRANCH:
BL thumb_sub

; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN

; with bit 0 clear
BX R1 ; to switch to ARM
SUB_RETURN:

+4

+4

● this example assumes that
R1 is preserved by the subroutine.

● The PC always contains
the address of the current instruction plus 8

• add R1, PC,#1
• (4 bytes)

• BX R1
• (4 bytes)

• SUB_BRANCH
• (PC of add inst. + 8 bytes)

•

•

Branch and Return
Methods

74 Young Won Lim
12/26/24

Branch and Exchange (5)

https://www.embedded.com/introduction-to-arm-thumb/

● The Thumb BL instruction actually resolves
into two instructions, so 8 bytes are used
between SUB_BRANCH and SUB_RETURN .

● BL thumb_sub (4 bytes)

• BL (H=0) Offset_high (2 bytes)
• BL (H=1) Offset_low (2 bytes)

● add R1, #7 (2 bytes)
● BX R1 (2 bytes)

mov R0, #5 ; argument to function is in R0
add R1, PC,#1 ; load address of SUB_BRANCH,

; set for THUMB by adding 1
BX R1 ; R1 contains address

;of SUB_BRANCH+1
;to switch to Thumb

SUB_BRANCH:
BL thumb_sub

; must be in a space of +/- 4 MB
add R1, #7 ; point to SUB_RETURN

; with bit 0 clear
BX R1 ; to switch to ARM
SUB_RETURN:

+4

+4

Branch and Return
Methods

75 Young Won Lim
12/26/24

Thumb → ARM interworking call

to BL to an intermediate Thumb code segment
that executes the BX instruction.

the BL instruction loads the link register
immediately before the BX instruction is executed.

In addition, the Thumb instruction set version of BL sets bit 0
when it loads the link register with the return address.

When a Thumb-to-ARM interworking subroutine call returns
using a BX LR instruction, it causes the required state change
to occur automatically.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-subroutines

 CODE16
ThumbProg
 MOV r0, #2
 MOV r1, #3
 ADR r4, ARMSubroutine

 BL __call_via_r4

Stop
 MOV r0, #0x18
 LDR r1, =0x20026
 SWI 0xAB
__call_via_r4

 BX r4

 CODE32
ARMSubroutine
 ADD r0, r0, r1
 BX LR

 END

BL __call_via_r4

BX r4

Stop

BX r4

LR[0] = 0 → ARM state

BX LR

Branch and Return
Methods

76 Young Won Lim
12/26/24

Thumb → ARM interworking call

If you always use the same register
to store the address of the ARM subroutine
that is being called from Thumb,
this segment can be used
to send an interworking call to any ARM subroutine.

You must use a BX LR instruction
at the end of the ARM subroutine to return to the caller.

You cannot use the MOV pc,lr instruction
to return in this situation
because it does not cause
the required change of state.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-subroutines

ADR r4, ARMSubroutine

 CODE16
ThumbProg

 ADR r4, ARMSubroutine
 BL __call_via_r4

__call_via_r4
 BX r4

 CODE32
ARMSubroutine

 BX LR

Branch and Return
Methods

77 Young Won Lim
12/26/24

ARM → Thumb interworking call

no need to set bit 0 of the link register
because the routine is returning to ARM state.

store the return address by copying PC into LR
with a MOV lr,pc instruction
immediately before the BX instruction.

Remember that the address operand to the BX instruction
that calls the Thumb subroutine must have bit 0 set
so that the processor executes in Thumb state on arrival.

As with Thumb-to-ARM interworking subroutine calls,
you must use a BX instruction to return.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-subroutines

 CODE16
ADR r4, ThumbSub + 1

 …
 MOV lr, pc
 BX r4

 CODE16
ThumbSub
 ADD r0, r0, r1
 BX LR
 END

LR[0] = 0 → ARM state

ADR r4, ThumbSub + 1
BX r4

Branch and Return
Methods

78 Young Won Lim
12/26/24

ARM → Thumb interworking call example code (1)

 AREA ArmAdd,CODE,READONLY
 ; name this block of code.
 ENTRY ; Mark 1st instruction to call.
 ; Assembler starts in ARM mode.
main
 ADR r2, ThumbProg + 1
 ; Generate branch target address and set bit 0,
 ; hence arrive at target in Thumb state.
 BX r2 ; Branch exchange to ThumbProg.
 CODE16 ; Subsequent instructions are Thumb.
ThumbProg
 MOV r0, #2 ; Load r0 with value 2.
 MOV r1, #3 ; Load r1 with value 3.
 ADR r4, ARMSubroutine ; Generate branch target address, leaving bit 0
 ; clear in order to arrive in ARM state.
 BL __call_via_r4 ; Branch and link to Thumb code segment that will
 ; carry out the BX to the ARM subroutine.
 ; The BL causes bit 0 of lr to be set.
Stop ; Terminate execution.
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0xAB ; Angel semihosting Thumb SWI
__call_via_r4 ; This Thumb code segment will
 ; BX to the address contained in r4.
 BX r4 ; Branch exchange.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-subroutines

Branch and Return
Methods

79 Young Won Lim
12/26/24

ARM → Thumb interworking call example code (2)

 CODE32 ; Subsequent instructions are ARM.
ARMSubroutine
 ADD r0, r0, r1 ; Add the numbers together
 BX LR ; and return to Thumb caller
 ; (bit 0 of LR set by Thumb BL).
 END ; Mark end of this file.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-subroutines

Branch and Return
Methods

80 Young Won Lim
12/26/24

Thumb → ARM interworking call example code (1)

 AREA ThumbAdd,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark 1st instruction to call.
 ; Assembler starts in ARM mode.
main
 MOV r0, #2 ; Load r0 with value 2.
 MOV r1, #3 ; Load r1 with value 3.
 ADR r4, ThumbSub + 1 ; Generate branch target address and set bit 0,
 ; hence arrive at target in Thumb state.
 MOV lr, pc ; Store the return address.
 BX r4 ; Branch exchange to subroutine ThumbSub.
Stop ; Terminate execution.
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; Angel semihosting ARM SWI

 CODE16 ; Subsequent instructions are Thumb.
ThumbSub
 ADD r0, r0, r1 ; Add the numbers together
 BX LR ; and return to ARM caller.
 END ; Mark end of this file.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-subroutines

Branch and Return
Methods

81 Young Won Lim
12/26/24

Cortex-M3 : 32-bit processor

https://developer.arm.com/documentation/dui0552/a/introduction/about-the-cortex-m3-processor-and-core-peripherals

● The Thumb instruction set is a subset of the most
commonly used 32-bit ARM instructions.

● Thumb instructions are each 16 bits long,
and have a corresponding 32-bit ARM instruction
that has the same effect on the processor model.

● The Cortex-M3 processor is
a high performance 32-bit processor
designed for the microcontroller market.

● It offers significant benefits to developers, including:
outstanding processing performance combined with

➢ fast interrupt handling.
➢ enhanced system debug with
➢ extensive breakpoint and trace capabilities.

Branch and Return
Methods

82 Young Won Lim
12/26/24

Cortex-M3 : Thumb state only

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● The Cortex-M3 processor only supports
execution of instructions in Thumb state. (T = 1)

● The following can clear the T bit to 0:

● instructions BLX, BX and POP {PC}

● restoration from the stacked xPSR value
on an exception return

● bit[0] of the vector value on an exception entry or reset.

● In the Cortex-M3 processor, attempting to execute
instructions when the T bit is 0 results in a fault or lockup.
See Lockup for more information.

● The Thumb status bit (T) indicates
the processor’s current state:
• 0 for ARM state (default)
• 1 for Thumb.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

ARM Architecture (2A)
Pipelined Architecture 83 Young Won Lim

12/26/24

ARM Exception Handling

N Z C V R

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Branch and Return
Methods

84 Young Won Lim
12/26/24

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

