Branch and Return Methods

Young Won Lim
12/26/24

Copyright (c) 2024 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Branch and Return 2 Young \1/\526%2
Methods

mailto:youngwlim@hotmail.com

Based on

ARM System-on-Chip Architecture, 2" ed, Steve Furber
Introduction to ARM Cortex-M Microcontrollers
— Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibafnez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Branch and Return 3 Young XZ?S&'JZ
Methods

Branch and Return Instructions

Branch and Return 4 Young \1/\;726591
Methods

ARM vs. Thumb programmer’s models

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

ARM state

Branch and Return

Methods

RO
R1
R2
R3
R4
R5
R6
R7

SP
LR
PC

CPSR

Thumb state

ARM state

« 16 + 1 =17 normal registers

Thumb state

e 11 + 1 =12 normal registers

Young Won Lim
12/26/24

ARM Register Sets (2-1)

* The biggest register difference involves the SP register.
* the Thumb state
unique stack mnemonics (PUSH, POP)
* the ARM state.
no such stack mnemonics (PUSH, POP)

e PUSH, POP instructions assume
the existence of a stack pointer (R13)
* PUSH, POP instructions translate

into load and store instructions
in the ARM state.

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 6 Young \1/\;726%2
Methods

PUSH and POP Thumb instructions (1)

PUSH stores registers on the stack,

with the lowest numbered register high
using the lowest memory address

R2 [|
and the highest numbered reqister
using the highest memory address. R1 I:I
RO[|
POP loads registers from the stack, low

with the lowest numbered register
using the lowest memory address

and the highest numbered reqister
using the highest memory address.

the registers in the { } can be specified in any order,
but the order in which they appear on the stack is fixed

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

Branch and Return 7
Methods

Full Descending Stack

high

- 3

low

R2

R1

RO

Young Won Lim

12/26/24

PUSH and POP Thumb instructions (2)

If you want these in a different order then you have to write
them in separate instructions in the assembly language.
, . Full Descending Stack
The registers are stored in sequence, 9
the lowest-numbered register f i
to the lowest memory address (start_address), Before Alter

through to the highest-numbered register high high
to the highest memory address (end_address) SP)
end_address 1 R2
the start_address is the value of the SP 5 R1

minus 4 times the number of registers to be stored.
start_address) 3 RO

Subsequent addresses are formed |
. . . ow low
by incrementing the previous address by four.

One address is produced for each register

that is specified in .
start_address=SP -4*3 new SP

The end_address value is four less
than the original value of SP. end_address = SP — 4

The SP register is decremented
by four times the numbers of registers in .

https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets

Branch and Return 8 Young \{\5265';2
Methods

PUSH and POP Thumb instructions (3)

So according to the above explanations,

) . : Full Descending Stack
the ordering of registers in one PUSH bracket

doesn't matter. high high

PUSH {RO0, R1, R2} R [|

PUSH {R2, R1, R0} 1 R2

PUSH {R1, R2, R0} R1 I:I 2 R1
RO

all would result in the some ordering in the stack = 3 RO
low low L

the lowest / highest numbered register (R0/R2)

uses the lowest / highest (stack) memory address

if a single PUSH instruction has

multiple registers in the bracket, PUSH {RO0, R1, R2}

looks like sorted pushing actions PUSH {R2, R1, RO} 1 PUSHR2

2 PUSHR1

first, PUSH R2 to take the highest address, PUSH {R1, R2, R0} 3 PUSHRO

followed by PUSH R1 and

ended with PUSH RO to take the lowest address

. , . , I valent instructi
but bit mask is actually used in implementation alt equivaient Instructions
https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets
Branch and Return o] Young Won Lim

Methods 12/26/24

PUSH and POP Thumb instructions (4)

if R2 get pushed last and popped first in a LIFO stack

e Full Descending Stack
or SP pointing R2

or R2 takes the lowest stack address, high high
there is no single PUSH bracket statement R2 I:I
1 RO
but three separate PUSH instructions must be used R1 I:I 2 R1
RO
PUSH RO =3 R2
PUSH R1 low low
PUSH R2

If you look at assembled hex/binary,
you'll find that push with same registers
but different order encode to the same instruction. No single PUSH 1 PUSHRO

Instruction is possible 2 PUSHR1
That will be related to instruction encoding, 3 PUSHR2
because it's pretty much a bitmask of registers
https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets
Branch and Return 10 Young Won Lim

Methods 12/26/24

PUSH and POP Thumb instructions (5)

The instructions in this group allow registers 0-7 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

and optionally LR to be pushed onto the stack, 11o0/1l1lLl1/0lR Rlist
and registers 0-7 and optionally PC
to be popped off the stack.

The stack is always assumed to be Full Descending. gCI[I)_(?nt:)itt store LR/load PC

1 - Store LR/Load PC

L R

0O 0 PUSH {Rlist} .

0 1 PUSH {Rlist,LR} Load/Store bit

1 0 POP {Rlist} 0 - Store to memory

1 1 POP {Rlist, PC} 1 - Load from memory

PUSH {R0-R4,LR}

: Store RO,R1,R2,R3,R4 and R14 (LR) at the stack 1514131211109 8 7 6 50EOOLO
; pointed to by R13 (SP) and update R13. 1/0{12/1/0/12/0|2|0|O0O|0|1]21 1|11

; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} @ @
; Load R2,R6 and R15 (PC) from the stack o 14 18 12 1l 109 8 7 3 L0
; pointed to by R13 (SP) and update R13. 11o0/1/1/12/12!/o0l2!/0/12/0/0/0/11/010
; Useful to restore workspace and return from sub-routine.
http://bear.ces.cwru.edu/eecs_382/ARM7-TDMI-manual-pt3.pdf
Branch and Return 11 Young Won Lim

Methods 12/26/24

PUSH and POP Thumb instructions (6)

the order of PUSH
.thumb high - low
push {0,112} 15 14 13 12 11 10 9 8 7 6 5 4 3 (2 @ (0
push {r2,r1,r0} 1/0{12/1/0/1/0|0|0|O0O|0|0O0]O0 1|11
push {r0}
push {rl1}
push {r2} b 4 0 7
Disassembly of section .text:
00000000 <.text>: Full Descending Stack
0: b407 push {r0, r1, r2}
2: b407 push {r0, r1, r2} high .
4: b4a01 push {r0} in hardware
6: b402 push {rl1}
8: b404 push {r2} 11 R2 PUSH R2
2 R1 PUSH R1
in the push instruction the lower 8 bits are a register list/mask. 3 RO PUSH RO
So the 7 in b407 indicates the three registers r0,rl,r2. 1 R2 PUSH R2
the hardware goes from bit 7 to bit O if set then push that register 2 R1 PUSH R1
3 RO PUSH RO
If you want these in a different order then you have to write 1 RO
them in separate instructions in the assembly language.) R1
= 3 R1
low
https://stackoverflow.com/questions/63304428/ordering-of-registers-in-push-and-pop-brackets
Branch and Return 12 Young Won Lim

Methods 12/26/24

ARM Register Sets (2-2)

 The CPSR register holds

processor mode bits (user or exception flag) N Negative flag
interrupt mask bits Z Zero flag
condition codes and C Carry flag

V Overflow flag

Thumb status bit
To disable Interrupt (IRQ), set |

* The Thumb status bit (T) indicates To disable Fast Interrupt (FIQ), set F
the processor’s current state:
0 for ARM state (default) USR User mode
1 for Thumb. FIQ Fast Interrupt mode

SVC Supervisor mode
ABT Abort mode

* Although other bits in the CPSR may be modified in UND Undefined mode
software, it's dangerous to write to T directly; SYS System mode
the results of an improper state change are
unpredictable.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 O

N Z CV Il F T mode

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 13 Young W(;n I7im
Methods 12/26/24

Branch instructions

B, BL,
BX, BLX

B, BL,
BX, BLX

BL and BLX copy the return address into LR (R14)

BX and BLX can change the processor state

https://developer.arm.com/documentation/dui0489/c/arm-and-thumb-instructions/branch-and-control-instructions/b--bl--bx--bIx--and-bx]

Branch and Return
Methods

14 Young Won Lim
12/26/24

Branch instructions and operand types

* B {cond} label * BL {cond} label Branch
. . Branch with Link

Brand and eXchange
. e BLX {cond} label Brand with Link and eXchange
* BX {cond} Rm « BLX {cond}Rm
* B {cond} label BL {cond} label * B {cond} label
. * BLX {cond} label e BL {cond} label

 BLX {cond} label

. . « BX {cond} Rm
* BX {cond} Rm « BLX {cond}Rm « BLX {cond} Rm

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 15 Young W(;n I7im
Methods 12/26/24

B and BL instructions (1)

B {cond} label

Branch

Branch with Link

Brand and eXchange

Brand with Link and eXchange

* BL {cond} label

* cond is an optional condition code
* label is a program-relative expression

e The B instruction
e causes a branch to label.

* The BL instruction
* copies the address of the next instruction
into r14 (Ir, the link register)
e causes a branch to label.

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 16 Young W(;n I7im
Methods 12/26/24

B and BL instructions (2)

| |
* machine-level B and BL instructions
have a range of +32Mb
from the address of the current instruction.

2% Byte = 2¢ MB = 16 MB

+/- 8 MB (forward, backward)

* However, you can use these instructions +/-32 MB (2 Isb’s : 4 bytes alignment)
even if label is out of range.

* Often you do not know
where label is placed by the linker.

* When necessary, the ARM linker
adds veneer _code to allow longer branches

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 17 Young W(;n I7im
Methods 12/26/24

B and BL instructions (3)

 The ARM BL instruction has a 24-bit immediate for encoding the branch offset

. thi_s would give you arange of 2 bytes, or +/-8MB 2% Byte = 2¢ MB = 16 MB
(given that the immediate allows forwards or backwards).
+/-8 MB (forward, backward)

« all ARM instructions are 4 bytes long,
and must be size aligned. | +/- 32 MB (2 Isb’s : 4 bytes alignment)

* no need to consider the two least significant bits
of the address

* taking our branch range from +/-8MB to +/-32MB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1/0(1|L Offset (11)
B 0 24-bit immediate 224 Byte = 24 MB +/- 8 MB
+/-
aL 1 /- 32 MB

https://community.arm.com/support-forums/f/architectures-and-processors-forum/3061/range-of-bl-instruction-in-arm-state

Branch and Return 18 Young W(;n I7im
Methods 12/26/24

BX and BLX instructions (1)

e BX {cond}Rm
{ J Branch

Branch with Link
Brand and eXchange
Brand with Link and eXchange

* BLX {cond} label
« BLX {cond} Rm

* cond is an optional condition code
* label is a program-relative expression
* Rm is a register containing an address to branch to

e The BX instruction
* causes a branch to the address contained in Rm
* changes the instruction set, if required:

* The BLX instruction
* copies the address of the next instruction
into r14 (Ir, the link register)
* causes a branch to label.
* can change the instruction set

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 19 Young W(;n I7im
Methods 12/26/24

BX and BLX instructions (2)

* B {cond} label BL {cond} label Branch
. . Branch with Link
Brand and eXchange
. e BLX {cond} label Brand with Link and eXchange
 BX {cond} Rm « BLX {cond}Rm

> with label
always changes the state.
ARM state — Thumb state
Thumb state - ARM state
1 =N .
with Rm
Both ARM state Rm[0] = 0 — to ARM state
and Thumb state provide Rm[0] = 1 - to Thumb state
B, BL, BX, BLX
https://www.embedded.com/introduction-to-arm-thumb/
Branch and Return 20 Young Won Lim

Methods 12/26/24

B, BL, BX, and BLX instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1 0|1|L Offset
Branch Y B{<cond>} <address> PC := Offset
Branch with Link 1 BL{<cond>} <address> R14 := PC+8; PC := Offset
cond o, 60 1j0/0/2/0j2j2412j12j127/2|2|2|2|2|j2/2/ 01001 Rn
Branch and Exchange BX{<cond>} Rn PC :=Rn; Rn[0] = 0 - to ARM state
Rn[0] =1 —» to Thumb state
cond o, 600,1j0/0/2/0f2j242y12j27/2|2|2|2|2j2/2/ 01011 Rn
Branch with Link and Exchange BLX{<cond>} Rn R14 :=PC+8; PC :=Rn; Rn[0] = 0 - to ARM state
Rn[0] =1 - to Thumb state
1/1/1(1|1/0|1|H Offset
Branch with Link and Exchange BLx{<cond>} <address> PC := Offset always changes the state.

ARM state — Thumb state
Thumb state - ARM state

Branch and Return 21 Young W(;n I7im
Methods 12/26/24

Branch instructions — changing the state

BX Rn

changes the state depending on bit[0] of Rn: Rn[0]=0 - ARM state
BLX Rn

Rn[0]=1 — Thumb state

o< I

cond o,060;j2/,00/2/j0j2/2j242j2|1|142j12|1|1/1

0|0
Branch and Exchange BX{<cond>} Rn PC :=Rn; 1
cond c,o0/0/j2/,0/0j2/0j1f2|1f42|12f2|2(2|12(2|2j2/0(0|1|12 RnL“
Branch with Link and Exchange BLX{<cond>} Rn R14 :=PC+8; PC :=Rn;

BLX label always changes the state. ARM state — Thumb state

Thumb state — ARM state

1111|101 H

Branch with Link and Exchange

Offset
BLX{<cond>} <address> PC := Offset

https://developer.arm.com/documentation/dui0489/c/arm-and-thumb-instructions/branch-and-control-instructions/b--bl--bx--bIx--and-bx]

Branch and Return

22 Young Won Lim
Methods 12/26/24

BLX in ARM Architecture v5

In ARM Architecture v5
both ARM and Thumb state

provide a BLX instruction

that will call a subroutine addressed by a register

and correctly sets the return address
to the sequentially next value of the program counter.

/IHIO042E_aapcs.pdf

Branch and Return 23 Young \1/\526%2

Methods

Switching the state (1) BX or BLX

* There are several ways to enter or leave
the Thumb state properly.

* The usual method is
via the Branch and Exchange (BX) instruction.
* also Branch, Link, and Exchange (BLX)
if you're using an ARM with version 5 architecture.

* During the branch, the CPU examines
the least significant bit (Isb) of the destination address
to determine the new state.

RO 0 RO 1
BX RO :to ARM state BX RO :to Thumb state
BLX RO :to ARM state BLX RO ;to Thumb state

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 24 Young W(;n I7im
Methods 12/26/24

Switching the state (2) Exception Handler

* When an exception occurs, the processor
automatically begins executing in ARM state
at the address of the exception vector.

* So another way to change state is
to place your 32-bit code in an exception handler.

* If the CPU is running in Thumb state
when that exception occurs, you can count on it

being in ARM state within the handler.

* If desired, you can have the exception handler
put the CPU into Thumb state via a branch.

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 25 Young W(;n I7im
Methods 12/26/24

Switching the state (3) T bit in the SPSR

The final way to change the state is
via a return from exception.

* When returning from the processor’s exception mode,
the saved value of T in the SPSR register is used
to restore the state.

* This T bit can be used, for example,
by an operating system
to manually restart a task in the Thumb state —
if that’s how it was running previously.

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 26 Young W(;n I7im
Methods 12/26/24

Branch and Exchange (1)

* the Branch and Exchange (BX) instruction.
* also Branch, Link, and Exchange (BLX)
if you're using an ARM with version 5 architecture. - B {cond} label

* BL {cond} label

* During the branch, the CPU examines

o) . . . * BLX {cond} label ==
the least significant bit (Isb) of the destination address « BX{cond}Rm <= + BLX {cond} Rm -
to determine the new state.

with label =
BX RO ;to ARM state RO 0 always changes the state.
BLX RO : to ARM state ARM state — Thumb state
Thumb state - ARM state
BX RO ;to Thumb state RO 1
BLX RO ;to Thumb state with Rm *=
Rm[0] = 0 —» to ARM state
Rm[0] =1 = to Thumb state
address of a 32-bit word in Rm
not used
https://www.embedded.com/introduction-to-arm-thumb/
Branch and Return 27 Young Won Lim

Methods 12/26/24

Branch and Exchange (2)

* Since all ARM instructions will align themselves
on either a 32- or 16-bit boundary,
the Isb of the address is not used in the branch directly.

* ifthe Isb is 1 when branching from ARM state,
the processor switches to Thumb state
before it begins executing from the new address;

e if the Isb is O when branching from Thumb _state,
the processor switches back to ARM state it goes.

* B {cond} label

* BL {cond} label

* BX{cond}Rm <=m

* BLX {cond} label =
* BLX{cond} Rm 4=

BXRm =

BLX Rm *

; destination address in the regsiter Rm
If Rm[0] is O, to ARM state.
If Rm[Q] is 1, to Thumb state.

BLX lable ==
; destination address is the PC-relative lable expression
always change: (ARM - Thumb, Thumb - ARM)

with label *=

always changes the state.
ARM state — Thumb state

Thumb state » ARM state

with Rm *=
Rm[0] = 0 —» to ARM state
Rm[0] =1 = to Thumb state

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 28
Methods

Young Won Lim
12/26/24

Entering and leaving the Thumb state (1)

* several ways to enter or leave the Thumb state properly.

* BX {cond} Rm

« the usual method is via the BX (Branch and EXchange) instruction. * BLX{cond} Rm

« also BLX (Branch, Link, and EXchange) with version 5 architecture.

with Rm
.) Rm[0] = 0 —» to ARM state
* during the branch, the CPU examines Rm[0] = 1 - to Thumb state

the Isb of the destination address in a register operand
to determine the new state.

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

Branch and Return 29 Young W(;n I7im
Methods 12/26/24

Entering and leaving the Thumb state (2)

« all ARM instructions will align themselves
on either a 32- or 16-bit boundary —

* the Isb of the destination address
Is not used in the branch directly.

* if the Isb is 1 when branching from ARM state,
the processor switches to Thumb state

before it begins executing from the new address;

 if the Isb is O when branching from Thumb state,
back to ARM state it goes.

32-bit word alignment

T

T2

THL

+0

{
N
e +7

+6

+5

+4

S +11

+10

59

+8

word addresses

addresses of least significant byte
of a 4-byte word (little endian)

not used

16-bit halfword alignment

5 (+1 +0

+2

NS

+2 ‘/» - 2
S +5 +4

half-word addresses

addresses of least significant byte
of a 2-byte halfword (little endian)

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-about-a-code-snippet-on-arm-thumb-state-change

Branch and Return
Methods

30

not used

Young Won Lim

12/26/24

32-bit / 16-bit alignment

Since all ARM instructions have
either a 32- or 16-bit alignment

the LSB of the address is not used in the branch directly.

32-bit (4 bytes) word - the least significant 2 bits of the target address are not used
16-bit (2 bytes) word - the least significatn 1 bit of the target address is not used

can use the the least significant bit is used to change the state (ARM « Thumb)

32-bit word alignment 16-bit halfword alignment
1 8 +2 +1 +0 1 +1 +0
+4 | +2
. ‘/—* +7 +6 +5 +4 P +3 +2
BT 410 +9 +8 2 . +5 +4
word addresses half-word addresses

addresses of least significant byte not used addresses of least significant byte not used

of a 4-byte word (little endian) of a 2-byte halfword (little endian)
https://www.cs.princeton.edu/courses/archive/fall13/cos375/ARMthumb.pdf
Branch and Return 31 Young Won Lim

Methods 12/26/24

PC (Program Count) R15 Register

The Program Counter (or PC) is

a register inside the microprocessor
that stores the memory address

of the next instruction to be executed.

In ARM processors, the Program Counter is
a 32-bit register which is also known as R15.

The processor first fetches the instruction
from the address stored in the PC.

The fetched instruction is then decoded decode
so that it can be interpreted by the microprocessor.

Once decoded, the instruction can then be executed
and the PC incremented so that it contains
the address of the next instruction.

the fetch-decode-execute cycle.

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecturel-4-2.html

Branch and Return 32 Young W(;n I7im
Methods 12/26/24

PC and 3-stage pipeline (1)

[_fetch | L

3 stage pipeline execution

Read Instruction pointed at fetch

decode

execute

By Program Counter

decode i

fetch

decode | execute

Increment Program Counter

Decode the Instruction To point at next instruction

execute i

Execute the Instruction

:

http://mwww-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecture1-4-2.html

fetch decode | execute

y

Execute a current instruction

Decode the next instruction

Fetch the next’s next instruction

Branch and Return 33
Methods

Young Won Lim
12/26/24

PC and 3-stage pipeline (2)

3 stage pipeline execution

fetch | decode | execute the current instruction is being executed
fetch | decode | execute the next instruction is being decoded
fetch | decode | execute the next's next instruction is being fetched
the current when PC is accessepl during execution,
time slot PC must have to be increased

to fetch the next’s next instruction

)) PC+8 for ARM instructions
Execute a current instruction

Decode the next instruction PC+4 for Thumb instructions
Fetch the next’s next instruction

http://mwww-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecture1-4-2.html

Branch and Return 34 Young W(;n I7im
Methods 12/26/24

Incrementing PC (1)

The Program Counter is automatically incremented
by the size of the instruction executed.

« 4 byte size in ARM state
e 2 byte size in Thumb state.

when a branch instruction is being executed,
the PC holds the destination address.

during execution, PC stores

the address of the current instruction plus
e 8 (two ARM instructions) in ARM state,
e 4 (two Thumb instructions) in Thumb(vl) state.

Thus the content of PC
 aword address in ARM state
* a halfword address in Thumb state

This is different from x86 where PC always points
to the next instruction to be executed.

https://azeria-labs.com/arm-data-types-and-registers-part-2/

Branch and Return 35 Young W(;n I7im
Methods 12/26/24

Incrementing PC (2)

memory addresses are given in bytes (byte addresses)

memory is usually accessed by a word and
aligned on word boundaries. (word addresses)
for a high performance

but also can be accessed by a byte or a halfword
with a performance loss

in ARM processors,
all ARM instructions take up one word (4 bytes).
all Thumb instructions take up one halfword (2_bytes).

incrementing the PC for the next instruction corresponds to

in the ARM state
PC+4 (in a word address)

in the Thumb state
PC+2 (in a halfword address)

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/mdp_micro/lecturel/lecturel-4-2.html

Branch and Return 36
Methods

| ARM State |

32-bit word alignment

— ARM state instruction
+4 i’\ :
o ARM state instruction
+4 ‘ ;
\ . .
-~ ARM state instruction

word addresses

TIRNARNRANNARNARNANNANNANNNEE B

addresses of least significant byte notused —
of a 4-byte word (little endian)

| Thumb State |

16-bit halfword alignment

Thumb state instruction

w2
AN

/t» Thumb state instruction
+2 '

N Thumb state instruction

half-word addresses

TRIRRENARNARNARNARNARNANNNEE (o

addresses of least significant byte not used —
of a 2-byte halfword (little endian)

Young Won Lim
12/26/24

The PC values in ARM and Thumb states

In A32 code, PC +8
the value of the PC is
the address of the current instruction plus 8 bytes,

In T32 code: PC +4
the value of the PC is

the address of the current instruction plus 4 bytes.
for B, BL, CBNZ, and CBZ instructions,

the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0
for all other instructions that use labels,

In A64 code, PC
the value of the PC is
the address of the current instruction.

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

w4
+4

32-bit word alignment

3 +2 +1 +0 execute
o +7 +6 +5 +4 decode
e #1410 +9 +8 fetch
word addresses
SINRRRRNARRRNNAAR RN
addresses of least significant byte not used
of a 4-byte word (little endian)
16-bit halfword alignment
- +1 +0 execute
+2 (
P +3 +2 decode
2 S +5 +4 fetch
half-word addresses
SINRRRRNARRRNNRAR NN
addresses of least significant byte not used

of a 2-byte halfword (little endian)

Branch and Return 37

Methods

Young Won Lim
12/26/24

The PC values in Thumb states (1)

In hardware, PC in Thumb state can point any halfword
when a programmer access PC in Thumb state,

during the execution stage of the pipeline,

its value can be

« (PC+4)

any halfword address of the next’s next instruction
for B, BL, CBNZ, CBZ instructions

e (PC + 4) with bit[0]=0

only a word address of the next’'s next instruction
for all other instructions

https://developer.arm.com/documentation/dui0801/b/Cacdbfji

Branch and Return 38
Methods

for B, BL, CBNZ, CBZ the value of PC, which a programmer can access,
can be any halfword address

PC can point to any halfword

*
* Halfword
* view
*
* > Word
* * view
for all other instructions the value of PC, which a programmer can access,
can only be a word address
PC can point to any halfword *|
Halfword
* view
word aligned with bit[1]=0
Word

*
*

view

Young Won Lim

12/26/24

The PC values in Thumb states (2)

for B, BL, CBNZ, CBZ the value of PC, which a programmer can access, for B, BL, CBNZ, CBZ the value of PC, which a programmer can access,
can be any halfword address can be any halfword address
current instruction —p] *
\ Halfword current instruction — * Halfword
next's next instruction ———m»| * view view
\ next’s next instruction ——» *
\ * Word * Word
‘ * view * view
for all other instructions the value of PC, which a programmer can access, for all other instructions the value of PC, which a programmer can access,
can only be a word address can only be a word address
current instruction —P * *
Halfword current instruction —] Halfword
next's next instruction ———» *| view *| view
next's next instruction ———m»

word aligned with bit[1] = 0 word aligned with bit[1] = 0
* Word * Word
* view * view
https://developer.arm.com/documentation/dui0801/b/Cacdbfji
Branch and Return 39 Young Won Lim
12/26/24

Methods

Return from a procedure (1)

ARM is unusual among the processors
by having the program counter available

as a “general purpose” register.

Most other processors have the program counter hidden,
and its value will only be disclosed as the return address
when calling a function.

If you want to modify it, a jumping instruction is used.

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Branch and Return
Methods

For example, on the x86, the program counter
is called the instruction pointer,

and is stored in eip,

which is not an accessible register.

After a function call, eip is pushed onto the stack,
at which point it could be examined.

Return is done through the ret instruction
which pops the return address off the stack,
and jumps there.

Another example: on the MIPS,

the program counter is stored into register 31
after executing a JALR instruction,

which is used for function calling.

The value in there can be examined,
and a return is a register jump JR to that register.

Young Won Lim
12/26/24

Return from a procedure (2)

ARM’s unusual design allows many,

many ways of returning from functions. B B I
]]

But first, we must understand
how function calls work on the ARM.

On ARM, the program counter is register 15, BX B I X
or rl5, also called pc. y

The instruction to call a function is
bl (for immediate offsets, a label operand)
or blx (for addresses in registers, a register operand).

These instructions stores the return address BL and BLX copy
in r14, called the link register, or Ir. the return address

into LR (R14)

To return, we must put this value back
into pc.

LR - return
(R14) address

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Branch and Return 41 Young W(;n I7im
Methods 12/26/24

Return from a procedure (3)

Method 1

When writing non-leaf functions, i.e. use push and pop to restore all the registers,
functions that calls other functions, except putting what was Ir

the value of Ir must be preserved, when we are doing pop into pc.

since calling another function will overwrite it.

This will overwrite pc with the return address,
The most common way is achieving the return.
to store it on the stack.

On the ARM, push and pop instructions Note that we could instead use r14
instead of Ir and r15 instead of pc,
use push and pop to preserve but this is less clear on the intent.

the registers we modify.

For example, if we want push {r3, r4, Ir} pop {r3, r4, pc}
to preserve r3, r4, and Ir,

we can write push {r3, r4, Ir}.

A normal function will look like: equivalent _ equivalent
PUSH high POP

push {r3, r4, Ir} ; save registers. sequence =) sequence

. : 1 PUSHLR Ir 1 POP R3

; function body. 2 PUSHR4 r4 2 POP R4

3 PUSHR3 =) r3 3 POP PC
pop {r3, r4, pc} ; restore registers
- and return (pc < Ir) low

https://quantum5.ca/2017/10/19/arm-ways-to-return/
Branch and Return 42 Young Won Lim

Methods 12/26/24

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Return from a procedure (4)

::» Define Procedures

functionl PROC ; using PROC and ENDP for procedures
PUSH {R5, LR} ; save values in the stack
MOV R5,#8 ;set initial value for the delay loop
delay
SUBS R5, R5, #1
BNE delay

POP {R5, PC} ;pop out the saved value from the stack,
;:check the value in the R5 and
;if it is the saved value

ENDP

MOV R5, #9 ;; prepare for function call

BL functionl

https://www.labs.cs.uregina.ca/301/ARM-subroutine/lecture.html

Branch and Return 43 Young W(;n I7im
Methods 12/26/24

Return from a procedure (5)

Method 2
use an unconditional jump to register to return

useful in leaf functions
where Ir needs not to be stored on the stack.

bx Ir

this jumps to the address in Ir,
setting pc to Ir, and completing the return.

Method 3

Similar in rationale to method 2,
ARM lets you manipulate the program counter
as you would any other register.

mov pc, Ir

This copies Ir into pc, also completing the return.

https://quantum5.ca/2017/10/19/arm-ways-to-return/

Branch and Return 44 Young W(;n I7im
Methods 12/26/24

Return from a procedure (6)

Method n

many other ways of copying the value
from one register into another push {r3, pc}

but as long as Ir at the beginning of the function call
is goplaced into pc, a return is completed.

But please, use the most sensible ways to return.

This means you should prefer the first two,
depending on whether the function is a leaf.

As a distant third, use method 3 (mov pc, Ir).

pop {r3, pc} bx Ir
mov pc, Ir
non-leaf function leaf function
https://quantum5.ca/2017/10/19/arm-ways-to-return/
Branch and Return 45 Young Won Lim

Methods 12/26/24

Return from a procedure (6)

subroutines in an ARM assembler code in BASIC. R13 (SP)
The subroutines are said to be ended with R14 (LR)
MOVS R15,R14 MOVS PC,LR R15 (PC)

call for each subroutine starting with the label:
.some_subroutine

But when | want to end the routine

that calls subroutines within it,

if | use:

MOV R15,R14 MOV PC,LR

the program tends to hang rather than
to exit from that routine.

OS_Exit cannot be used

because it brings the entire program
to an abrupt conclusion instead of
continuing to the next BASIC line.

https://www.riscosopen.org/forum/forums/11/topics/3986°

Branch and Return 46 Young W(;n I7im
Methods 12/26/24

MOVS instruction

MOV/{S} Rd, Rm The MOV instruction copies the value of Rm into Rd.

MOVS Rd, #imm The MOVS instruction performs the same operation
as the MOV instruction, but also updates the N and Z flags.
MVNS Rd, Rm
The MVNS instruction takes the value of Rm,
performs a bitwise logical negate operation on the value,
S is an optional suffix. and places the result into Rd.
If S is specified, the condition code flags
are updated on the result of the operation
If S is specified, these instructions:
Rd s the destination register.
update the N and Z flags according to the result
Rm s aregister.
do not affect the C or V flags.
Imm s any value in the range 0-255.

https://developer.arm.com/documentation/ddi0597/2024-12/Base-Instructions/MOV--MOVS--immediate---Move--immediate--

Branch and Return 47 Young W(;n I7im
Methods 12/26/24

MOVS instruction

MOVS Rd, #imm 2. MOVS PC, #imm
Move (immediate) writes an immediate value The MOVS variant of the instruction
to the destination register. performs an exception return

without the use of the stack.

If the destination register is not the PC,
the MOVS variant of the instruction In this case:
updates the condition flags based on the result.

The PE branches to the address written to the PC,
The field descriptions for <Rd> identify the encodings and restores PSTATE from SPSR_<current_mode>.
where the PC is permitted as the destination register.

The PE checks SPSR_<current_mode>

Arm deprecates any use of these encodings. for an illegal return event.
However, when the destination register is the PC: The instruction is UNDEFINED in Hyp mode.
1. MOV PC, #imm The instruction is CONSTRAINED UNPREDICTABLE

in User mode and System mode.
The MOV variant of the instruction is an interworking branch,
* PE (Processing Element)
see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

https://developer.arm.com/documentation/ddi0597/2024-12/Base-Instructions/MOV--MOVS--immediate---Move--immediate--

Branch and Return 48 Young W(;n I7im
Methods 12/26/24

Branches and Interworking (1)

When using Thumb, the system will typically have
both ARM and Thumb functions.

Even if you compile your application for Thumb,
you might still have to think about such things
as libraries and prebuilt binaries.

The core must know which instruction set
is to be used for the code being executed
after a branch, procedure call or return.

This interworking between instruction sets

When writing C code, the linker takes care of this for us,

but a little more care is required when porting assembly code.

The target instruction set state is determined
in different ways depending on the type of branch.

We can consider a number of different instructions:

Function Return

MOV PC, LR BXLR

Function Return from the Stack

LDMFD SPI, {registers, pc}
POP {<registers>, pc}

Branch

B
BL

PC maodification
MOV PC, register BX register
Function Call to Register address

MOV LR, PC
MOV PC, register

BLX <register>

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

Young Won Lim

Branch and Return 49 12/26/24

Methods

Branches and Interworking (2)

Function return
Legacy code might use the MOV PC, LR instruction.

This is unsafe for systems that contain a mix of ARM
and Thumb code and must be replaced by BX LR
for code running on all later architectures.

Function return from the stack

This is done using the LDMFD SP!, {registers, pc} instruction
that will continue to work correctly in the ARMv7-A architecture,
although a newer, equivalent form, POP {<registers>, pc}

is also available.

This is used when registers that must be preserved
by the function are PUSHed at the start of the function.

Branch

A simple B instruction will work in the same fashion
on all ARM architectures.

If ARM and Thumb instructions are mixed
in a single source file (this is unusual),
there is no automatic instruction set switch for local symbols.

The assembler might introduce a veneer depending
on whether it knows that the destination is

in a different instruction set and

is definitely a code symbol

(such as a .type <symbol>, %function or .thumb_func).

Because a symbol appears in a code section
it is not assumed to be a code symbol
unless specifically tagged in this way.

If the label is in a different file, the linker will take care of
any necessary instruction set change.

Similar considerations apply for a function call (BL).

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

Young Won Lim

Branch and Return 50 12/26/24

Methods

Branches and Interworking (3)

PC modification

Care might be required with other instructions

that modify the PC

and produce a branch effect.

For example, MOV PC, register

must be replaced with BX register

in systems that contain both ARM and Thumb code.

Function call to register address

If code contains a sequence like MOV LR, PC
followed by MOV PC, register,

this will not work in a system that has both ARM and Thumb code.
You must replace it with the single instruction BLX <register>.

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

Branch and Return 51 Young W(;n I7im
Methods 12/26/24

Branches and Interworking (4)

When a destination or return address is variable
or calculated at run-time, take care to appropriately set
the Thumb bit (bit [0]) in the address correctly

and to use the correct type of branch,
to make sure that the call (and return, if applicable)
switches instruction set appropriately.

If an external label or function defined in another object
is referenced, the linker will produce an address
with the Thumb bit (bit [0]) set appropriately.

However, if you reference a symbol internal to the object,
things are more complicated.

For C functions, or code tagged as Thumb, bit [0] will be
set appropriately, but it will not be set appropriately
for other symbols.

In particular, GNU Assembler local labels will not
have the Thumb bit set appropriately,
nor will the GNU current assembly location symbol ".".

Therefore, when coding in assembler,
if an address will be passed
to any other function or object,

for example,

as a return address, method address or callback,
you must handle the Thumb bit setting yourself,
setting bit [0] of the address where required.

https://developer.arm.com/documentation/den0013/d/Porting/Porting-ARM-code-to-Thumb/Branches-and-interworking

Branch and Return
Methods

Young Won Lim
12/26/24

Interworking (1)

When the core executes ARM instructions,
it is said to be operating in ARM state.

When it is operating in Thumb state,
it is executing Thumb instructions.

A core in a particular state can only execute instructions
from that instruction set.

We must make sure that the core does not receive instructions

of the wrong instruction set.

Each instruction set includes instructions
to change processor state.

ARM and Thumb code can be mixed,
if the code conforms to the requirements of the ARM
and Thumb Procedure Call Standards.

Compiler generated code will always do so,
but assembly language programmers
must take care to follow the specified rules.

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

Branch and Return
Methods

53

Young Won Lim
12/26/24

Interworking (2)

Selection of processor state is controlled
by the T bit in the CPSR.

When T is 1, the processor is in Thumb state.
When T is 0, the processor is in ARM state.

However, when the T bit is modified,

it is also necessary to flush the instruction pipeline
(to avoid problems with instructions

being decoded in one state

and then executed in another).

Special instructions are used to accomplish this.

These are BX (Branch with eXchange) and
BLX (Branch and Link with eXchange).
LDR of PC and POP/LDM of PC also have this behavior.

In addition to changing the processor state

with these instructions, assembly programmers must
also use the appropriate directive

to tell the assembler to generate code

for the appropriate state.

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

Branch and Return
Methods

24

Young Won Lim
12/26/24

Interworking (3)

The BX or BLX instruction branches to an address
contained in the specified register,
or an offset specified in the opcode.

The value of bit [0] of the branch target address determines

whether execution continues in ARM state or Thumb state.

Both ARM (aligned to a word boundary)
and Thumb (aligned to a halfword boundary) instructions
do not use bit [0] to form an instruction address.

This bit can therefore safely be used

to provide the additional information

about whether the BX or BLX instruction

should change the state to ARM (address bit [0] = 0)
or Thumb (address bit [0] = 1).

The BL label will be turned into a BLX label as appropriate
at link time if the instruction set of the caller

is different from the instruction set of label,

assuming that it is unconditional.

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

Branch and Return
Methods

25

Young Won Lim
12/26/24

Interworking (4)

A typical use of these instructions is

when a call from one function to another is made
using the BL or BLX instruction,

and a return from that function is made

using the BX LR instruction.

Alternatively, we can have a non-leaf function
that pushes the link register onto the stack

on entry and pops the stored link register

from the stack into the program counter, on exit.

Here, instead of using the BX LR instruction to return,
we have a memory load.

Memory load instructions that modify the PC
might also change the processor state
depending on the value of bit [0] of the loaded address.

https://developer.arm.com/documentation/den0013/d/Introduction-to-Assembly-Language/Interworking

Branch and Return
Methods

56

Young Won Lim
12/26/24

Return from a procedure (7)

.entry
BL myfunction
MOV PC, R14

.myfunction
; does nothing
MOV PC, R14

This will fail because the exit address is in R14 on entry,
and the BL call trashes that, so your program cannot ever exit
as the return address is gone.

https://www.riscosopen.org/forum/forums/11/topics/3986

Branch and Return 57 Young W(;n I7im
Methods 12/26/24

Return from a procedure (8)

Consider:
.entry ; entry point, return address in R14
BL myfunction ; call subroutine (puts return address in R14)
MOV PC, R14 : return to BASIC (R14 will come back here)
.myfunction
; does nothing
MOV PC, R14 ; exit subroutine by jumping back to R14

If you follow through this code, you'll see that the line
that it supposed to return to BASIC is the instruction following the BL,

which means R14 will point to it,

https://www.riscosopen.org/forum/forums/11/topics/3986

Young Won Lim

Branch and Return 58 12/26/24

Methods

Return from a procedure (9)

How to fix this? You need to preserve R14 prior to it being used again.
Like this (assuming R13 is a valid stack, it is from BASIC):

.entry
STR R14, [R13, #-4]! ; stack R14
BL myfunction
LDR PC, [R13], #4 ; unstack R14 directly into PC to exit

.myfunction
; does nothing
MOV PC, R14

The weird looking offsets are to write-back R13
to support a full descending stack.

The STR’s “#-4]!" performs a decrement before action
(akin to the behaviour of STMFD/STMDB),

while the LDR’s “], #4” performs an increment after action
(akin to LDMFD/LDMIA).

This supports the type of stack used within RISC OS.

https://www.riscosopen.org/forum/forums/11/topics/3986

Branch and Return 59 Young W(;n I7im
Methods 12/26/24

Return from a procedure (10)

You might have come across it like this,
but these days it is inefficient to use a multiple register instruction
to store and load single registers (and indeed, ARM64 doesn’t support STM/LDM at all!).

This is for information purposes as you will probably come across code
that does this. It's inefficient, so try to remember the STR/LDR version given above...

.entry
STMFD R13!, {R14}
BL myfunction
LDMFD R13!, {PC}

.myfunction

; does nothing
MOV PC, R14

https://www.riscosopen.org/forum/forums/11/topics/3986

Branch and Return 60 Young W(;n I7im
Methods 12/26/24

Return from a procedure (6)

https:/

Bra
Met

Certainly, PUSH and POP,
which are the preferred forms now | think,
are used with single registers.

If your assembler supports PUSH and POP
then it should automatically switch

between LDM/STM and LDR/STR
depending on whether one or many registers
need to be transferred

(they are basically just aliases

for the corresponding load/store instruction).

Of course the downside is you can’t specify
the base register or whether writeback is used,
so they’re only good for basic stack interactions.

| seem to remember at one time
being told that STM is decomposed into separate STR instructions
in more recent ARM versions.

Return from a procedure (6)

https:/

Bra
Met

Possibly you're thinking of AArch64 — there is no LDM/STM,
only the single register LDR/STR and double register LDP/STP.

Or maybe you're thinking about the fact

that modern ARMs allow interrupts to occur

in the middle of an LDM/STM —

if this happens then the ARM will point the exception return address
at the LDM/STM so that the entire instruction is restarted

once the interrupt has been dealt with

(it also makes sure the base address register hasn’t been updated,
but the state of the other registers/memory locations

used by the instruction are undefined

—so LDM/STM is no longer atomic from a single-CPU perspective)

Return from a procedure (11)

That's what Entry and EXIT (and friends) are for:

Entry - push a stack frame for procedure entry

(implicitly adds Ir to the register list),

optionally reserving a block of local workspace on the stack
EXIT - return from a procedure by popping the workspace + register list

from the most recent Entry

(i.e. the one located directly before it in the assembler listing)
EntryS/EXITS - variants which save and restore some or all of the PSR
EXITV/IEXITVC/EXITVS - return with V flag in a specified state

PullEnv/PullEnvS - pop the stack frame without returning from the procedure

ALTENTRY - generate an Entry/EntryS equivalent to the most recent
(used when shared code can have multiple entry points)

FRAMLDR/FRAMSTR - load/store specific registers from the stack frame
(calculates the correct offset, assuming you haven’t used Push/Pull
or adjusted SP manually)

If you're observant you'll also spot that there’s an ENTRY macro which is equivalent to Entry,
but that one isn’t used any more because objasm confuses it with the ENTRY directive.

https://www.riscosopen.org/forum/forums/11/topics/3986

Branch and Return 63 Young W(;n I7im
Methods 12/26/24

Subroutine call (1) BL (Branch and link) operation

Both the ARM and Thumb instruction sets contain
a primitive subroutine call instruction, BL target,
which performs a branch-with-link operation.

LR « the return address
the next value of the PC

PC « the destination address target

LR[0] « 1 if BL target was executed from Thumb state
LR[0] « 0 if BL target was executed from ARM state

The result is to transfer control
to the destination address,
passing the return address in LR
as an additional parameter

to the called subroutine

Control is returned to the instruction following the BL
when the return address is loaded back into the PC

/IHI0042E_aapcs.pdf

_ target
main
BL target
return -« LR
address
BX LR

“BL target” in Thumb state

then assign LR[0]=1
(to return to Thumb code)

“BL target” in ARM state

then assign LR[0]=0
(to return to ARM code)

Branch and Return
Methods 64

Young Won Lim
12/26/24

Subroutine call (2) BL vs. BX

] target _ R4 target
main main
BL target BX R4
rewrn 4 —— LR return g LR
address address
BX LR BX LR
/ ™ Ve N
BL has | ’ BX has
BL target no register operand BXtarget no label operand
BL sets the return BX R4 a programmer must
address in LR explicitly set the return
\. J N address in LR b
Branch and Return 65 Young Won Lim
12/26/24

Methods

Subroutine call (3) BX (Branch and eXchange) operation

A subroutine call can be synthesized
. . —P
by any instruction sequence that has the effect: main m el
LR[31:1] <« return address R14 := PC+8;
BX R4
LR[0] < code type at return address return LR
(0 ARM, 1 Thumb) address -
PC < subroutine address pc := ra4;
BXLR
in ARM-state, R4 := target+1;
to call a subroutine addressed by R4
with control returning to the following instruction,
LR[31:1] « the return address

LR[0] « O return to ARM codes
LR[0] « 1 return to Thumb codes

MOV LR, PC &= R14:=PC+8;

BX R4 -
return: = R14[0]=0;

/IHIO042E_aapcs.pdf

Branch and Return 66 Young \1/\;726%2

Methods

Subroutine call (4) ARM vs. Thumb state

ARM EE Thumb Thumb EE ARM
state state state state
_ R4 — » target _ R4 w» target
main main
BX R4 BX R4
return - return f
address E address E
BX LR ' BX LR
LR[0] « 0 R4[0] « 1 LR[0] « 1 R4[0] « 0
return to branch to return to branch to
ARM codes Thumb codes Thumb codes ARM codes

/IHIO042E_aapcs.pdf

Branch and Return 67 Young W(;n I7im
Methods 12/26/24

Subroutine call (5) the Isb of a destination address

return
address

ARM codes

MOV LR, PC

BX R4 e

Thumb codes

target:

BX LRe

LR[0] « O return to ARM codes

LR « the return address
LR[31:1] « the return address
LR[0] « O return to ARM codes

MOV LR, PC = R14:=PC+8;
BX R4 -
return: &= R14[0] = 0;

Thumb codes
MOV LR, PC
BX R4 e®

_

BX LRe

LR[0] « 1 return to Thumb codes

this will not work from Thumb state
because the instruction that sets LR
does not copy the Thumb-state bit to LR[0]

(LR[0] must be setto 1)

LR[0] « 1 return to Thumb codes

Branch and Return
Methods

Young Won Lim
12/26/24

State changing example (1)

MOV RO, #5 In ARM mode, PC indicates 2 instructions ahead
ADD R1, PC, #1)
BX Rle — | PC of 'ADD R1,PC#1'is
'SUB_BRANCH: |BL _thumb_sub (0) the address of SUB_BRANCH
BL thumb_sub (1) execution mode switch from ARM to Thumb
ADD R1, #7 at the SUB_ BRANCH and
BX R1 the program will execute in Thumb mode.
SUB RETURN: |)
And R1 is now 'SUB_BRANCH+1'
and by adding to 7
it will become 'SUB_BRANCH+8'.
MOV RO, #5 'SUB_BRANCH+8' is
ADD R1, PC, #1 the address of 'SUB_ RETURN' and
BX Rle——— 7 7 —— the program jumps to the address
BL thumb_sub (1)BL thumb_sub (0) ?hfe‘!"’eh)'(‘g(‘:lh%i ‘r’]?(')‘gee'jv i?l gggome
BX Rle. ADD R1, H from Thumb mode to ARM mode.

https://community.arm.com/developer/ip-products/processors/f/cortex-a-forum/5655/question-ak

Branch and Return 69 Young W(;n I7im
Methods 12/26/24

Branch and link operation (2)

main

SUB_RETURN

BXR1

R1[0] =1 to thumb

| ol

R1 return

address

SUB_BRANCH+8

/IHIO042E_aapcs.pdf

Branch and Return

Methods

SUB_BRANCH+1

target SUB_BRANCH

address

BL thumb_sub

thumb_ret —-f———

LR return

a'ddress

thumb_ret+1

BX R1

R1[0] =0 to ARM

70

thumb_sub

BXLR

LR[0] =1 to thumb

Young Won Lim
12/26/24

Branch and Exchange (2)

change into Thumb state, then back ARM ——F— E Thumb

State state

mov RO, #5 ; argument to function is in RO

add R1, PC,#1 ; load address of SUB BRANCH,
; set for THUMB by adding 1

BX R1 ; R1 contains address of SUB_BRANCH+1
; assembler-specific instruction
; to switch to Thumb

SUB BRANCH:

BL thumb_sub ; must be in a space of +/- 4 MB

add R1, #7 ; point to SUB_RETURN with bit O clear
BX R1

; assembler-specific instruction to switch to ARM
SUB_RETURN:

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 71 Young Won Lim

Branch and Exchange (3)

the BX instruction example

to go from ARM to Thumb state and back. mov RO, #5 | argument to function is in RO
add R1, PC#1 ; load address of SUB BRANCH,

; set for THUMB by adding 1
« first switches to Thumb state (BX R1) BX R1 ; R1 contains address

« R1[0] =1 (because of +1) , of SUB_BRANCH+1
: to switch to Thumb

* then calls a subroutine written SUB_BRANCH:
in Thumb code (BL thumb_sub) BL thumb_sub
; must be in a space of +/- 4 MB
« upon return from the subroutine (BX R1) add R1, #7 ; point to SUB_RETURN
the system again switches back , with bit O clear
to ARM state; BX R1 : to switch to ARM
* R1[0] =0 (because of +1+7= +8) SUB_RETURN:

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 72 Young W(;n I7im
Methods 12/26/24

Branch and Exchange (4)

* this example assumes that

R1 is preserved by the subroutine. mov RO, #5 ; argument to function is in RO
—> add R1, PC#1 ; load address of SUB BRANCH,
« The PC always contains AN . set for THUMB by adding 1
the address of the current instruction plus 8 — BX R1 ; R1 contains address
;of SUB_ BRANCH+1
add R1, PC,#1 4 to switch to Thumb
(4 bytes) |
BX R1 SUB_BRANCH:
(4 bytes) —= BL thumb_sub
SUB_BRANCH ; must be in a space of +/- 4 MB
(P_C of add inst. + 8 bytes) add R1, #7 ; point to SUB_RETURN
; with bit O clear
BX R1 : to switch to ARM
SUB_RETURN:

https://www.embedded.com/introduction-to-arm-thumb/

Branch and Return 73 Young W(;n I7im
Methods 12/26/24

Branch and Exchange (5)

* The Thumb BL instruction actually resolves
into two Iinstructions, so 8 bytes are used
between SUB_ BRANCH and SUB_RETURN .

* BL thumb_sub (4 bytes)

BL (H=0) Offset_high (2 bytes)
BL (H=1) Offset_low (2 bytes)

 add R1, #7
* BX R1

(2 bytes)
(2 bytes)

https://www.embedded.com/introduction-to-arm-thumb/

mov RO, #5 ; argument to function is in RO
—> add R1, PC,#1 ; load address of SUB BRANCH,
+4 ; set for THUMB by adding 1

— BX R1 : R1 contains address
;of SUB_ BRANCH+1
+4 ;to switch to Thumb
SUB_BRANCH:

— BL thumb_sub
; must be in a space of +/- 4 MB

add R1, #7 ; point to SUB_ RETURN
: with bit O clear

BX R1 ; to switch to ARM

SUB_RETURN:

Branch and Return
Methods

Young Won Lim
12/26/24

Thumb - ARM interworking call

to BL to an intermediate Thumb code segment
that executes the BX instruction.

the BL instruction loads the link register
immediately before the BX instruction is executed.

In addition, the Thumb instruction set version of BL sets bit 0
when it loads the link register with the return address.

When a Thumb-to-ARM interworking subroutine call returns
using a BX LR instruction, it causes the required state change
to occur automatically.

CODE16 Stop

ThumbProg MOV r0, #0x18
MOV 0, #2 LDR rl, =0x20026
MOV rl, #3 SWI OxAB
ADR r4, ARMSubroutine __call via r4
BL __call_via_r4 BX r4

BL call via r4
BXr4

Stop
BX r4

LR[0] = 0 » ARM state

BX LR
CODE32
ARMSubroutine
ADD ro, ro, r1
BX LR
END

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-

Branch and Return 75
Methods

Young Won Lim
12/26/24

Thumb - ARM interworking call

If you always use the same reqister

to store the address of the ARM subroutine

that is being called from Thumb,

this segment can be used

to send an interworking call to any ARM subroutine.

You must use a BX LR instruction

at the end of the ARM subroutine to return to the caller.

You cannot use the MOV pc,lr instruction
to return in this situation

because it does not cause

the required change of state.

ADR r4, ARMSubroutine

CODEL16

ThumbProg
**k%k
ADR r4, ARMSubroutine
BL call via rd
*k%k

__call_via_r4
BX r4

CODE32
ARMSubroutine

*k*k

BX LR

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-

Branch and Return 76
Methods

Young Won Lim
12/26/24

ARM — Thumb interworking call -

no need to set bit O of the link register LR[0] = 0 - ARM state
because the routine is returning to ARM state.

store the return address by copying PC into LR
with a MOV Ir,pc instruction
immediately before the BX instruction.

Remember that the address operand to the BX instruction ADR r4, ThumbSub + 1
that calls the Thumb subroutine must have bit 0 set BX rd
so that the processor executes in Thumb state on arrival.

As with Thumb-to-ARM interworking subroutine calls,
you must use a BX instruction to return.

CODE16 CODE16

ADR r4, ThumbSub + 1 ThumbSub

ADD 10,10, rl
MOV Ir, pc BX LR

BX r4 END

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-

Branch and Return 77 Young W(;n I7im
Methods 12/26/24

ARM = Thumb interworking call example code (1)

AREA ArmAdd,CODE,READONLY
; hame this block of code.

ENTRY ; Mark 1st instruction to call.
; Assembler starts in ARM mode.

main

ADR r2, ThumbProg + 1
; Generate branch target address and set bit 0,
; hence arrive at target in Thumb state.

BX r2 ; Branch exchange to ThumbProg.

CODE16 ; Subsequent instructions are Thumb.
ThumbProg

MOV 10, #2 ; Load r0O with value 2.

MOV rl, #3 ; Load rl with value 3.

ADR r4, ARMSubroutine ; Generate branch target address, leaving bit O

; Clear in order to arrive in ARM state.
BL __call_via_r4 ; Branch and link to Thumb code segment that will

; carry out the BX to the ARM subroutine.
; The BL causes bit 0 of Ir to be set.

Stop ; Terminate execution.
MOV r0, #0x18 ; angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWiI OxAB ; Angel semihosting Thumb SWiI
__call via r4 ; This Thumb code segment will
; BX to the address contained in r4.
BX r4 ; Branch exchange.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-

Branch and Return 78 Young W(;n I7im
Methods 12/26/24

ARM = Thumb interworking call example code (2)

CODE32 ; Subsequent instructions are ARM.
ARMSubroutine
ADD 10,10, r1 ; Add the numbers together
BX LR ; and return to Thumb caller
; (bit 0 of LR set by Thumb BL).
END ; Mark end of this file.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-

Branch and Return 79 Young W(;n I7im
Methods 12/26/24

Thumb - ARM interworking call example code (1)

AREA ThumbAdd,CODE,READONLY ; Name this block of code.
ENTRY ; Mark 1st instruction to call.
; Assembler starts in ARM mode.
main
MOV 10, #2 ; Load rO with value 2.
MOV rl, #3 ; Load r1 with value 3.
ADR r4, ThumbSub + 1 ; Generate branch target address and set bit 0,
; hence arrive at target in Thumb state.
MOV Ir, pc ; Store the return address.
BX r4 ; Branch exchange to subroutine ThumbSub.
Stop ; Terminate execution.
MOV r0O, #0x18 ; angel_SWIireason_ReportException
LDR rl, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting ARM SWiI
CODE16 ; Subsequent instructions are Thumb.
ThumbSub
ADD 10,10, 11 ; Add the numbers together
BX LR ; and return to ARM caller.
END ; Mark end of this file.

https://developer.arm.com/documentation/dui0040/d/Interworking-ARM-and-Thumb/Basic-assembly-language-interworking/Implementing-interworking-assembly-language-

Branch and Return S0 Young W(;n I7im
Methods 12/26/24

Cortex-M3 : 32-bit processor

* The Thumb instruction set is a subset of the most
commonly used 32-bit ARM instructions.

e Thumb instructions are each 16 bits long,
and have a corresponding 32-bit ARM instruction
that has the same effect on the processor model.

* The Cortex-M3 processor is
a high performance 32-bit processor
designed for the microcontroller market.

* |t offers significant benefits to developers, including:
outstanding processing performance combined with

> fast interrupt handling.

> enhanced system debug with
> extensive breakpoint and trace capabilities.

https://developer.arm.com/documentation/dui0552/a/introduction/about-the-cortex-m3-processor-and-core-peripherals

Branch and Return 81 Young W(;n I7im
Methods 12/26/24

Cortex-M3 : Thumb state only

* The Cortex-M3 processor only supports
execution of instructions in Thumb state. (T =1)

* The following can clear the T bit to 0:

* instructions BLX, BX and POP {PC} * The Thumb status bit (T) indicates
the processor’s current state:
* restoration from the stacked xPSR value - 0 for ARM state (default)
on an exception return -1 for Thumb.

* Dhit[0] of the vector value on an exception entry or reset.
* In the Cortex-M3 processor, attempting to execute

instructions when the T bit is 0 results in a fault or lockup.
See Lockup for more information.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z2|C|V | | F| T mode

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

Branch and Return 82 Young W(;n I7im
Methods 12/26/24

ARM Exception Handling

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

N

Z

C

\Y,

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

ARM Architecture (2A)
Pipelined Architecture

83

Young Won Lim
12/26/24

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial C

[2] http://blog.bobuhiroll.net/2014/01-13-baremetal.html

[3] http://www.valvers.com/open-software/raspberry-pi/

[4] https://lwww.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

Branch and Return 84 Young W(;n I7im
Methods 12/26/24

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

