Data Transfer (4A)

Young Won Lim
7126/23

Copyright (c) 2014 - 2020 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Young Won Lim
7126/23

mailto:youngwlim@hotmail.com

Based on

Introduction to ARM Cortex-M Microcontrollers — Embedded Systems,
J. W Valvano

Assembly Programming 3 Young W(7n I7im
(4A) Data Transfer 7/26/23

Memory Objects

Memory object type Register Example operand
Constants in code space PC =Constant [PC, #28]
Local variables on the stack SP [SP, #0x04]
Global variables in RAM RO-R12 [RO]
I/O ports RO-R12 [RO]
Assembly Programming 4 Young Won Lim

(4A) Data Transfer 7/26/23

Address loading pseudo-instructions

ADR {cond} Rd, label (address)
ADRL {cond} Rd, expression (address arithmetic)
LDR {cond} Rd, =1label (=address)

LDR {cond} Rd, =number (=constant)

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

Assembly Programming 5 Young Won Lim
(4A) Data Transfer 7126123

ADR Rd, label

ADR {cond} Rd, label

ADR is to get the address

of the literal pool (type constant)

to a register.

The literal pool in code area

is typically after the end of functions

ADR Rd, label

ADD Rd, pc, #offset

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

Assembly Programming
(4A) Data Transfer

can be translated into

+8 ‘-
.

offset

label: “

Young Won Lim
7/26/23

ADRL Rd, expression

ADRL {cond} Rd, expression

The assembler converts an ADRL Rd, label

into

two data processing instructions

that load the address, if it is in range
start MOV ro,#10) 42

ADRL r4,start + 60000 “

; ADD r4,pc,#0xe800
: ADD r4,r4,#0x254

60000-8-4 = 59988 = &eab54
&e800 + &254 = &eab4

start:

+8 -~
o

Offset | start+60000-8
| start+59992

A

prefix & = prefix 0x

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

Assembly Programming 7

(4A) Data Transfer

Young Won Lim
7/26/23

LDR Rd, =label

LDR {cond} Rd, =label (=address)

placing the address label in a literal pool

LDR Rd, =1label

LDR Rd, [pc, #offset]

the offset to a literal pool

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

+8 -~
o

offset afull 32-bit label

A Tabel

a literal |
pool

label: '

Assembly Programming 8
(4A) Data Transfer

Young Won Lim
7/26/23

LDR Rd, =number

LDR {cond} Rd, =number (=constant)

placing the number in a literal pool

+8 -
LDR Rd, =number <
LDR Rd, [pc, #offset] the offset to a literal pool
offset
MOV Rd, #imm16 for a small range number, A number
a literal
pool
https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler
Assembly Programmin Young Won Lim
< J J 9 7/26/23

(4A) Data Transfer

PC-relative address

ADR [/ LDR instruction
adds or subtracts an OffSEt In ARM state, the value of the PC
to the current PC value is the address of the current
) instruction plus 8 bytes.
to form a PC-relative address

at the time of executing o f
a current instruction,

PC has been advanced |
by 2 instructions forward (+8) offset |

current PC

target 4

pc — target = offset

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

Assembly Programming 1 Young Won Lim
(4A) Data Transfer 0 7126123

Getting a label address into a register

target:
. long 0xfeadbeef

adr ro, target

adrl re, target

ldr ro, =target

sub ro, pc,#(.+8-target)

1) and 2) are very similar and generate sub ro0, pc, #target.

3) puts a long in a literal pool and loads this
via ldr ro, [pc,#offset2]

or it may use a mov r0, #offset2
If the assembler finds it can

(usually an aligned label, like at 0x8000).
4) is to manually calculated a full 32-bit absolute address

Assembly Programming Young Won Lim
(4A) Data Transfer 11 7126123

ADR / ADRL offsets

target:
. long Oxfeadbeef

adr ro, target
adrl ro, target

1) and 2) are very similar and
generate sub ro, pc,offset

ro « pc - target
ro « offset

pc - target = offset

In ARM state, the value of the PC
is the address of the current
instruction plus 8 bytes.

ADR. ..

current [PC |5

offset

target 4

feadbeef

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

Assembly Programming
(4A) Data Transfer

12

Young Won Lim
7/26/23

ADR vs ADRL

The difference between adr and adr 1
comes from immediate operands.

immediate operands are 8bits rotated by a multiple of two.

So if the address is far, you may need to
perform two instructions (adr 1)

adr 1 will usually be faster than
the Idr variant (ldr =target)
which get a full 32-bits address in the literal pool

Assembly Programming Young Won Lim
(4A) Data Transfer 13 7126123

LDR offset

target:
. long oxfeadbeef
~ ~|LDR...
,,,,,,,,,,,,,,,,,,,,, .
ldr ro, =target (
current PC 4>-
offsetZ afull 32-bit target
puts a long in a literal pool aleral A target
to hold a full 32-bit address of target crii?ed

and loads this address via
ldr ro, [pc,#offset2]

target feadbeef |

Or it may use a MOV if the assembler finds it can
(usually an aligned label, like at 0x8000).

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

Assembly Programming Young Won Lim
(4A) Data Transfer 14 7126123

Manual computing an address

target:

'long GXfeadbeef In ARM state, the value of the PC
is the address of the current
instruction plus 8 bytes.

sub ro, pc,#(.+8-target)
AR
-~

- address of the current instruction current PC | ®
address of the sub ...

.+8 : where the current PC points to
target

PC - (.+8 - target)
PC - (PC - target)
a full 32-bit target address

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

Assembly Programming 15
(4A) Data Transfer

feadbeef

Young Won Lim

ADR Label Example

Access ADR R5, Pi ; R5 points to Pi
LDR R6, [R5] ; R6 = 123456
BX LR

Pi DCD 123456 ; literal pool

Pi the address of the location
where the value N is stored

R5 « PC-relative Pi ADR R5, Pi R5 R6
- Pi | 123456

Mem

[R5]

Pi 123456

LDR R6, [R5]

Pi DCD 123456

Assembly Programming 1 Young Won Lim
(4A) Data Transfer 6 7126123

LDR =number example

In \ LDR R5. =0x12345678 ‘ &N the address of the location
LDR R6, [R5] where the value N is stored
14

BX LR RS ?j RN6
Mem
[R5]
&N N
In LDR R5, [PC, #16] | LDR R6, [R5]
LDR R6, [R5]

BX LR
DCD 0x12345678

'R5 « PC-relative &N

Assembly Programming 17 Young Won Lim
(4A) Data Transfer 7126123

Data Transfer Types

B Unsigned 8-bit byte

SB Signed 8-bit byte

H Unsigned 16-bit halfword
SH Signed 16-bit halfword

D 64-bit data

18 Young Won Lim

Assembly Programming 7/26/23

(4A) Data Transfer

Data Transfer Examples

LDR{type}{cond}Rd, [Rn]
STR{type}{cond}Rd, [Rn]

LDR{type}{cond}Rd, [Rn,
STR{type}{cond}Rt, [Rn,

LDR{type}{cond}Rd, [Rn,
STR{type}{cond}Rd, [Rn,

{type} = {B|SB|H|SH|D}

Assembly Programming
(4A) Data Transfer

#n]
#n]

Rm,
Rm,

LSL #n]
LSL #n]

19

Young Won Lim
7/26/23

Data Transfer Examples

MOV{S}{cond} Rd, <op2>
MOV {cond} Rd, #im16
MVN{S} Rd, <op2>

If S is specified, the condition code flags
are updated on the result of the operation

S cannot be used with 16-bit immediate operand

These belong to data processing instructions

Assembly Programming Young Won Lim
(4A) Data Transfer 20 7126123

LDM / STM examples (1)

; RO holds address of first integer in array
; R1 holds array's length;
; fragment works only if length is multiple of 4

addInts MOV R4, #0

addLoop LDMIA RO!, { R5-R8 }
ADD R5, R5, R6
ADD R7, R7, R8
ADD R4, R4, R5
ADD R4, R4, R7
SUBS R1, R1, #4
BNE addLoop

R5

R6

11l

R7
|_> R8

R4

R5

R4

http://www.cburch.com/books/arm/

R7

Assembly Programming
(4A) Data Transfer

21

Young Won Lim
7/26/23

LDM / STM examples (2)

the ARM processor looks into the RO register for an address.

It loads into R5 the four bytes starting at that address,

into R6 the next four bytes, : 22
into B? the next four bytes, - R7
and into R8 the next four bytes. -— RS
RS := mem,,[RO + (]

R6 := mem,,[RO + 4]

R7 := mem,,[RO + 8]

RS = mem_, [RO +]_2] LDMIA ROI, { R5-R8 }

Meanwhile, RO is stepped forward by 16 bytes,
so with the next iteration the LDMIA instruction
will load the next four words into the registers.

RO :=R0O + 12

http://www.cburch.com/books/arm/

Assembly Programming 292 Young Won Lim
(4A) Data Transfer 7126123

LDM / STM examples (3)

Inside the braces { } can be any list of registers,

using dashes to indicate ranges of registers, RO RO
and using commas to separate ranges. R1 R1
R2 R2
The order in which the registers are listed is not significant; 22 Ej
. . R5 R5
Thus, the instruction LDMIA RO!, { R1-R4, R8, R11-R12 } RE RE
will load seven words from memory. R7 R7
: : R8 R8
even if we write LDMIA RO!, { R11-R12, R8, R1-R4 }, RO RO
R1 will receive the first word loaded from memory. R10 R10
R11 R11
{R1, R2, R3, R4, R8, R11, R12} R12 R12
R13 (SP) R13 (SP)
R14 (LR) R14 (LR)
R15 (PC) R15 (PC)

http://www.cburch.com/books/arm/

LDMIA RO!, { R5-R8 }

Young Won Lim

Assembly Programming 23 7126/23

(4A) Data Transfer

LDM / STM examples (4)

If the exclamation mark ! following RO is omitted,

then the address register RO is not altered
RO would continue pointing to the first integer in the array. - RS
L S — R6
we want RO to change so that it is pointing — R7
to the next four integers for the next iteration, — RS
the exclamation point should be included
LDMIA RO!, { R5-R8}
equivalent instructions without ! equivalent instructions with !
pre-indexed post-indexed
LDR R5, =[RO, #0] LDR R5, =[RO], #4
LDR R6, =[RO, #4] LDR R6, =[RO], #4
LDR R7, =[RO, #8] LDR R7, =[RO], #4
LDR R8, =[RO, #12] LDR R8, =[R0O], #4
ADD RO, RO, #12
http://www.cburch.com/books/arm/
i Young Won Lim
Assembly Programming 24 e ion

(4A) Data Transfer

LDM / STM examples (5)

STMIA stores several registers into memory.

In the following example, every number in an array
is shifted into the next element;

the array <2,3,5,7> becomes <0,2,3,5>.

http://www.cburch.com/books/arm/

Assembly Programming Young Won Lim
(4A) Data Transfer 25 7126123

LDM / STM examples (6)

; RO holds address of first integer in array
; R1 holds array's length;

R4
; fragment works only if length is multiple of 4 — RS
_ —) R6
shift MOV R4, #0 — R7
shLoop LDMIA RO, { R5-R8 } — RS
STMIA RO! { R4-R7 }
MOV R4, R8
SuUBS R1, R1, #4
BNE shLoop
R4=0
Notice how the LDMIA instruction does not have ! RO @ : RS
so that RO isn't modified. N o R6
R7
Thus, the STMIA stores into the same range of addresses R1=4*4 ~ R8
that were just loaded into the registers.
‘)
The STMIA instruction has ! because RO must be modified
for the next iteration of the loop.
http://www.cburch.com/books/arm/
Assembly Programming 26 Young Won Lim

(4A) Data Transfer 7/26/23

LDM / STM examples (7)

/
/
/
/
/
/
/
/
/

LDMIA, STMIA LDMDA, STMDA
Increment after Decrement after

LDMIB, STMIB LDMDB, STMDB
Increment before Decrement before

http://www.cburch.com/books/arm/

Assembly Programming Young Won Lim
(4A) Data Transfer 217 7126/23

LDM / STM examples (8)

LDMIA, STMIA Increment after

loading from the named address and
storing into increasing addresses.

LDMIB, STMIB Increment before

loading from four more than the named address and
storing into increasing addresses.

LDMDA, STMDA Decrement after

loading from the named address and
storing into decreasing addresses.

LDMDB, STMDB Decrement before

loading from four less than the named address and
storing into decreasing addresses.

http://www.cburch.com/books/arm/

Assembly Programming Young Won Lim
(4A) Data Transfer 238 7126123

LDM / STM examples (9)

Across all four modes,

the highest-numbered register
always corresponds to

the highest address in memory.

Thus, the instruction LDMDA RO, { R1-R4 }
will place R4 into the address named by RO,
R3 into RO - 4, and so on.

useful when we want to use a block of unused memory
as a stack.

http://www.cburch.com/books/arm/

Assembly Programming 29

(4A) Data Transfer

/
/
/
/
/
/
/
/
/

LDMDA, STMDA
Decrement after

R1
R2
R3
R4

il

Young Won Lim
7/26/23

PUSH, POP Synonyms

PUSH{cond} reglist
POP{cond} reglist

Synonyms

PUSH = STMDB R13! = STMFD R13!
POP = LDMIA R13! LDM = LDMFD R13!
Assume

the base register SP (R13)
the adjusted address written back to the base register

registers are stored on the stack in numerical order
with the lowest numbered register at the lowest address.

Full Descending Stack with SP (=R13)

Assembly Programming Young Won Lim
(4A) Data Transfer 30 7126123

PUSH, POP examples

STMDB : Decrement SP Before STR

PUSH {RO} PUSH {R1} PUSH {R2}
- T . 4
High
Y 4 spP
RO @ sP RO RO
R1L @SP R1
R2 4 sp
Low
> Y L Y > Y
POP {RO} POP {R1} POP {R2}

LDMIA : Increment SP After LDR

Full Descending Stack with SP (=R13)

Assembly Programming Young Won Lim
(4A) Data Transfer 31 7126123

Reglist examples

Equivalent instructions Sorted in ascending order

PUSH {R2, R1, RO} » {RO, R1, R2}
PUSH {R1-R2,R0} » {R1, R2, RO} » {RO, R1, R2}

S v

Low High
High
4 sp
R2 -
R1
RO |[@sSP =
Low
) Equivalent sequence
| 3 // of instructions
N PUSH {R2} PUSH {RO}
op {Ii@, RAl’ RAZ} PUSH {R1} i PUSH {R1}
PUSH {RO} PUSH {R2}
POP {R2, R1, RO}
POP {R1-R2, RO}
Assembly Programming 32 Young V\g?g?blzrg

(4A) Data Transfer

Stack Types and Stack Top Operations

Stack Types — Semantics
(F,E) x (A,D) ={FA, FD,EA,ED } (Full, Empty) x (Ascending, Descending)

PUSH (STM) / POP (LDM)
overan { FA/FD/EA/ED } type stack

Stack Top Operations — Syntax
(L,D) x (B,A) ={IB, IA, DB, DA } (Increment, Decrement) x (After, Before)

{ Inc / Dec } stack top operation
{ Before / After } STM / LDM

Assembly Programming Young Won Lim
(4A) Data Transfer 33 7126123

Stack Types

STMFA pessme o STMFD
“ TomFa LDMFD S
Full Ascending Stack Full Descending Stack

Default Stack Type, SP (R13)

STMEA o STMED
< . < |
LDMEA LDMED <

Empty Ascending Stack Empty Descending Stack

Assembly Programming 4 Young Won Lim
(4A) Data Transfer 3 7126123

(F_/E)and (_ B/ _A)reasoning

STMF[O [fthe stack top is full STMB theninc/ dec the stack pointer
before storing a new element

STME[] Ifthestacktopisempty STMJA theninc/ dec the stack pointer
after storing a new element

LDMF[] I the stack top is full L DM JA theninc/ dec the stack pointer
after getting an element

| DME[] Ifthe stacktopisempty | DM IB theninc/ dec the stack pointer
before getting an element

- Ascend - Inc
L= . Descend ~ Dec
Assembly Programming 35 Young Won Lim

(4A) Data Transfer 7/26/23

(A/ _D)and (I _/D) reasoning

STMJA Topush STMI[] Increment the stack top pointer
onto the ascending stack

STMID Topush STMDI[] Decrement the stack top pointer
onto the descending stack

L DMJA Topop | DMD[] Decrement the stack top pointer
from the ascending stack

LDMCID Topop . DMTI[] Increment the stack top pointer
from the descending stack

B \ Full - = ‘ Before
| Empty ~ After
Assembly Programming 36 Young Won Lim

(4A) Data Transfer 7/26/23

Block copy view = Stack view

STMIB #
STMIA
STMDB 4

\

STMDA

| DMIB
_DMIA

| DMDB
_DMDA

- = > -

Assembly Programming
(4A) Data Transfer

- = > -

> > - -

Ascending

Ascending

Descending

Descending

Descending

Descending

Ascending

Ascending

37

Full

Empty

Full

Empty

Empty

Full

Empty

Full

STMFA
STMEA

STMFD

STMED

LDMED

LDMFD

LDMEA
LDMFA

Young Won Lim

7/26/23

Stack view = Block copy view

Ascending

STMFA ¢ : STMIB 4
STMEA 4 ey hacening STMIA
STMFD | ¢ Pescending STMDB
STMED ey ey STMDA
LDMED ¢ ey Descending LDMIB 4
LDMFD | + L pescendng LDMIA 4
LDMEA 4 Ty LDMDB 4
LDMFA Ful | Ascending LDMDA
Assembly Programming 38 Young Won Lim

(4A) Data Transfer 7/26/23

Stack View Addressing

STMFA r8! {r0O,rl,r4d}
LDMFA r8! {r0O,rl,r4d}

STMEA r8! {r0O,rl,r4d}

LDMEA r8! {rO,rl,r4d}

- STMFD 8! {rO,rl,rd}

LDMED r8! {rO,rl,r4d}
STMED r8! {r0O,rl,r4d}

LDMED 8! {rO,rl,r4d}

Stack Types — Semantics

Assembly Programming
(4A) Data Transfer

39

PUSH(STM) / POP(LDM)
on an FA type stack

PUSH(STM) / POP(LDM)
on an EA type stack

PUSH(STM) / POP(LDM)
on an FD type stack

PUSH(STM) / POP(LDM)
on an ED type stack

Young Won Lim
7/26/23

Block Copy Addressing

STMIB r8! {r0O,rl,r4} Do inc stack top operation
LDMIB r8! {r0,rl,r4} before STM / LDM

r8! {r0,rl,r

Do inc stack top operation

LDMIA r8! {r0O,rl,r4d} after STM / LDM

~ STMDB r8! {rO,rl,rd4} |
LDMDB r8! {r0,rl,r4} Do dec stack top operation
STMDA r8! {r0O,rl,r4d}
LDMDA r8! {r0O,rl,r4d} Do dec stack top operation

after STM / LDM

Stack Top Operations — Syntax

Assembly Programming Young Won Lim
(4A) Data Transfer 40 7126123

Addressing mode examples (4)

Assembly Programming Young Won Lim
(4A) Data Transfer 41 7126123

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

Assembly Programming 42 Young Won Lim
(4A) Data Transfer 7126123

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

