| hexaoctagonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | (6.8)2 | 
| Schläfli symbol | r{8,6} or | 
| Wythoff symbol | 2 | 8 6 | 
| Coxeter diagram |      | 
| Symmetry group | [8,6], (*862) | 
| Dual | Order-8-6 quasiregular rhombic tiling | 
| Properties | Vertex-transitive edge-transitive | 
In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.
Constructions
There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 4 points, [8,6,1+], gives [(8,8,3)], (*883). Removing the mirror between the order 2 and 8 points, [1+,8,6], gives [(4,6,6)], (*664). Removing two mirrors as [8,1+,6,1+], leaves remaining mirrors (*4343).
| Uniform Coloring |  |  |  | |
|---|---|---|---|---|
| Symmetry | [8,6] (*862)      | [(8,3,8)] = [8,6,1+] (*883)    | [(6,4,6)] = [1+,8,6] (*664)     | [1+,8,6,1+] (*4343)    | 
| Symbol | r{8,6} | r{(8,3,8)} | r{(6,4,6)} | |
| Coxeter diagram |      |      =    |      =    |      =    | 
Symmetry
The dual tiling has face configuration V6.8.6.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4343), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*43) orbifold. These are subsymmetries of [8,6].
|  [1+,8,4,1+], (*4343) |  [(8,4,2+)], (2*43) | 
|---|
Related polyhedra and tiling
| Uniform octagonal/hexagonal tilings | ||||||
|---|---|---|---|---|---|---|
| Symmetry: [8,6], (*862) | ||||||
|      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  | 
| {8,6} | t{8,6} | r{8,6} | 2t{8,6}=t{6,8} | 2r{8,6}={6,8} | rr{8,6} | tr{8,6} | 
| Uniform duals | ||||||
|      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  | 
| V86 | V6.16.16 | V(6.8)2 | V8.12.12 | V68 | V4.6.4.8 | V4.12.16 | 
| Alternations | ||||||
| [1+,8,6] (*466) | [8+,6] (8*3) | [8,1+,6] (*4232) | [8,6+] (6*4) | [8,6,1+] (*883) | [(8,6,2+)] (2*43) | [8,6]+ (862) | 
|      |      |      |      |      |      |      | 
|  |  |  | ||||
| h{8,6} | s{8,6} | hr{8,6} | s{6,8} | h{6,8} | hrr{8,6} | sr{8,6} | 
| Alternation duals | ||||||
|      |      |      |      |      |      |      | 
|  | ||||||
| V(4.6)6 | V3.3.8.3.8.3 | V(3.4.4.4)2 | V3.4.3.4.3.6 | V(3.8)8 | V3.45 | V3.3.6.3.8 | 
| Symmetry mutation of quasiregular tilings: 6.n.6.n | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *6n2 [n,6] | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||||||
| *632 [3,6] | *642 [4,6] | *652 [5,6] | *662 [6,6] | *762 [7,6] | *862 [8,6]... | *∞62 [∞,6] | [iπ/λ,6] | ||||
| Quasiregular figures configuration |  6.3.6.3 |  6.4.6.4 |  6.5.6.5 |  6.6.6.6 |  6.7.6.7 |  6.8.6.8 |  6.∞.6.∞ | 6.∞.6.∞ | |||
| Dual figures | |||||||||||
| Rhombic figures configuration |  V6.3.6.3 |  V6.4.6.4 |  V6.5.6.5 |  V6.6.6.6 | V6.7.6.7 |  V6.8.6.8 |  V6.∞.6.∞ | ||||
| Dimensional family of quasiregular polyhedra and tilings: (8.n)2 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *8n2 [n,8] | Hyperbolic... | Paracompact | Noncompact | ||||||||
| *832 [3,8] | *842 [4,8] | *852 [5,8] | *862 [6,8] | *872 [7,8] | *882 [8,8]... | *∞82 [∞,8] | [iπ/λ,8] | ||||
| Coxeter |      |      |      |      |      |      |      |      | |||
| Quasiregular figures configuration |  3.8.3.8 |  4.8.4.8 |  8.5.8.5 |  8.6.8.6 |  8.7.8.7 |  8.8.8.8 |  8.∞.8.∞ | 8.∞.8.∞ | |||
See also

Wikimedia Commons has media related to Uniform tiling 6-8-6-8.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.

