With $4$ bits there are $2^4=16$ combinations. How many combinations can you have with $4$ qubits (assuming they are all superimposed)?
EDIT:
As per here, the argument is that if a qubit can hold more information when it's measurement(probability) is collapsed to give a $|1\rangle$ or a $|0\rangle$ (assuming measurement is without errors). For a superimposed qubit holding two values at the same time depending on how it has been encoded i.e. as per the parallel measurement (probably in a quantum gate) we could get $|00\rangle$, $|01\rangle $, $|10\rangle$, $11\rangle$. I am seeing this as if observed in parallelism 4 qubits would yield a combination ($2^8$) of 8 classical bits (i.e. n qubits having $2^{n+n}$ number of combinations in parallel). Is this correct?