TL;DR: No. The suggested bound fails to hold for any norm. Briefly, if we choose $\mathcal{A}=\mathcal{F}$ to be an idempotent channel then the right-hand side vanishes. However, if we choose $\mathcal{E}$ to be the Hadamard and $\mathcal{A}=\mathcal{F}$ to be the completely dephasing channel (which is idempotent) then the left-hand side remains positive.
Counterexample
Let's represent a quantum state in Bloch coordinates $(x, y, z)$, so that
\begin{align}
\rho=\frac12(I+xX+yY+zZ).\tag1
\end{align}
Then a quantum channel is completely described by its action on a general real $3$-vector $(x, y, z)$.
Let's choose $\mathcal{A}$ and $\mathcal{F}$ to be the completely dephasing channel$^1$
\begin{align}
\mathcal{A}(x, y, z)=\mathcal{F}(x, y, z)=(0, 0, z).\tag2
\end{align}
We note that $\mathcal{A}\circ\mathcal{F}=\mathcal{A}=\mathcal{A}\circ\mathcal{I}$, so
\begin{align}
\|\mathcal{A}\circ\mathcal{F}-\mathcal{A}\circ\mathcal{I}\|_\diamond=0.\tag3
\end{align}
Further, let's choose $\mathcal{E}$ to be the unitary Hadamard channel$^2$
\begin{align}
\mathcal{E}(x, y, z)=(z, -y, x).\tag4
\end{align}
Then
\begin{align}
(\mathcal{A}\circ\mathcal{E}\circ\mathcal{F})(x, y, z)&=\mathcal{A}(\mathcal{E}(\mathcal{F}(x, y, z)))\tag5\\
&=\mathcal{A}(\mathcal{E}(0, 0, z))\tag6\\
&=\mathcal{A}(z, 0, 0)\tag7\\
&=(0, 0, 0)\tag8
\end{align}
so $\mathcal{A}\circ\mathcal{E}\circ\mathcal{F}$ is the completely depolarizing channel$^3$. Similarly,
\begin{align}
(\mathcal{A}\circ\mathcal{E})(x, y, z)&=\mathcal{A}(z, -y, x)\tag9\\
&=(0, 0, x)\tag{10}
\end{align}
so $\mathcal{A}\circ\mathcal{E}\circ\mathcal{F}\neq\mathcal{A}\circ\mathcal{E}$. But then the positive definiteness of the diamond norm implies that
\begin{align}
\|\mathcal{A}\circ\mathcal{E}\circ\mathcal{F}-\mathcal{A}\circ\mathcal{E}\|_\diamond > 0.\tag{11}
\end{align}
Finally, combining $(3)$ and $(11)$, we obtain
\begin{align}
\|\mathcal{A}\circ\mathcal{E}\circ\mathcal{F}-\mathcal{A}\circ\mathcal{E}\|_\diamond > \|\mathcal{A}\circ\mathcal{F}-\mathcal{A}\circ\mathcal{I}\|_\diamond\tag{12}.
\end{align}
Note that the only property of the norm used in the proof is that $\|a-b\|=0\iff a=b$. This is satisfied by every norm, so the counterexample proves that the bound suggested in the question fails to hold for any norm, not just the diamond norm.
$^1$ Kraus representation $\mathcal{A}(\rho)=\mathcal{F}(\rho)=\frac12\rho+\frac12 Z\rho Z$.
$^2$ Kraus representation $\mathcal{E}(\rho)=H\rho H$.
$^3$ Kraus representation $(\mathcal{A}\circ\mathcal{E}\circ\mathcal{F})(\rho)=\frac14\rho+\frac14 X\rho X+\frac14 Y\rho Y+\frac14 Z\rho Z$.