$\def \b {\mathbf}$
$\def \c {\boldsymbol}$
Newton Euler Equations
At the center of mass
\begin{align*}
&m\,\b{\dot{v}}_c=\b F_c\\
&\b I_c\,\c{\dot{\omega}}_c+\c\omega_c\times (\b I_c\,\c\omega_c)=\c\tau_c
\end{align*}
or
\begin{align*}
&\underbrace{\begin{bmatrix}
m\,\b I_3 & \c 0 \\
\c 0 & \b I_c \\
\end{bmatrix}}_{\b M}
\begin{bmatrix}\,
\b{\dot{v}}_c \\
\c{\dot{\omega}}_c \\
\end{bmatrix}+
\underbrace{\begin{bmatrix}
\c 0 \\
\c\omega_c\times (\b I_c\,\c\omega_c\\
\end{bmatrix}}_{\b f_\omega}=\underbrace{\begin{bmatrix}
\b F_c \\
\c\tau_c \\
\end{bmatrix}}_{\b f_a}\tag 1
\end{align*}
Kinematic Point $~\b c$
\begin{align*}
&\b p_c=\b p_p+\b R\,c\quad,
\b{\dot{p}}_c=\b{\dot{p}}_p+\b{\dot{R}}\b c \\
&\b{\ddot{p}}_c=\b{\ddot{p}}_p+\b{\ddot{R}}\b c\quad,\text{with}\\
&\b{\dot{R}}=\b R\,\c\Omega_c\\
&\b{\ddot{R}}=\b{\dot{R}}\,\c{\Omega}_c+\b{{R}}\,\c{\dot{\Omega}}_c=
\b R\,\c\Omega_c\,\c\Omega_c+\b R\,\c{\dot{\Omega}}_c\quad\Rightarrow\\
&\b{\ddot{p}}_c=\b{\ddot{p}}_p+(\b R\,\c\Omega_c\,\c\Omega_c+\b R\,\c{\dot{\Omega}}_c)\,\b c\\\\
&\b{\dot{v}}_c=\b{\dot{v}}_p+ +\c{\dot{\Omega}}_c\,c+\c\Omega_c\,\c\Omega_c\,\b c\\
&\c{\dot{\omega}}_c=\c{\dot{\omega}}_p
\end{align*}
$\Rightarrow$
\begin{align*}
& \begin{bmatrix}\,
\b{\dot{v}}_c\\
\c{\dot{\omega}}_c \\
\end{bmatrix}=
\underbrace{\begin{bmatrix}
\c 1 & -\b C \\
\c 0 & \c 1 \\
\end{bmatrix}}_{\b J}
\begin{bmatrix}\,
\b{\dot{v}}_p \\
\c{\dot{\omega}}_p \\
\end{bmatrix}+
\underbrace{\begin{bmatrix}\,
\c\Omega_c\c\Omega_c\,\b c \\
\c 0 \\
\end{bmatrix}}_{\b f_{p}}
\end{align*}
substitute into equation (1)
\begin{align*}
&\b M\,\left(\b J\, \begin{bmatrix}\,
\b{\dot{v}}_p \\
\c{\dot{\omega}}_p \\
\end{bmatrix}+\b f_p\right)+\b f_\omega=\b f_a\\
& \text{ multiply from the left with}\\
& \b J^T=\begin{bmatrix}
\c 1 & \c 0\\
\b C & \c 1 \\
\end{bmatrix}
\end{align*}
$\Rightarrow$
\begin{align*}
&\b J^T\,\b M\,\b J\, \begin{bmatrix}\,
\b{\dot{v}}_p \\
\c{\dot{\omega}}_p \\
\end{bmatrix}+\b J^T\,\left(\b M\,\b f_p+\b f_\omega\right)=\b J^T\,\b f_a\tag 2
\end{align*}
\begin{align*}
&\begin{bmatrix}
m\,\b I_3 & -m\,\b C \\
m\,\b C & \b I_c-m\,\b C\,\b C \\
\end{bmatrix}
\,\begin{bmatrix}\,
\b{\dot{v}}_p \\
\c{\dot{\omega}}_p \\
\end{bmatrix}+ \begin{bmatrix}
m\,\c\Omega\,\c\Omega\,\b c\\
\c\Omega\,\b I_c\,\c\omega+m\,\b C\,\c\Omega\,\c\Omega\,\b c \\
\end{bmatrix}
=\begin{bmatrix}
\b F_c \\
\c\tau_c+\b c\times\b F_c\\
\end{bmatrix}
\end{align*}
with
\begin{align*}
&\b a\times\b b\times\b c=(\b a\cdot \b c)\,\b b -(\b a\cdot \b b)\,\b c\quad\Rightarrow\\
&\c\Omega\,\c\Omega\b c=(\c \omega\cdot \b c)\c\omega-(\c \omega\c{\cdot\omega})\b c\\
&\b C\,\c\Omega\,\c\Omega\b c=(\c \omega\cdot \b c)(\b c\times\c\omega)-(\c \omega\c{\cdot\omega})\underbrace{(\b c\times \b c)}_{=0}\\
&\b C\,\b C\,\c\omega=(\b c\cdot\c\omega)\,\b c-(\b c\cdot\b c)\,\c\omega\\
&\c\Omega\,\b C\,\b C\,\c\omega=(\b c\cdot\c\omega)\,(\c\omega\times \b c)-
(\b c\cdot\b c)\underbrace{(\c\omega\times\c\omega)}_{=0}\\
&\Rightarrow\\
&\b C\,\c\Omega\,\c\Omega\,\b c=-\c\Omega\,\b C\,\b C\,\c \omega
\end{align*}
Newton Euler Equations at Point $\b p$
\begin{align*}
&{\,\begin{bmatrix}
m\,\b I_3 & -m\,\b C \\
m\,\b C & \b I_c-m\,\b C\,\b C \\
\end{bmatrix}
\,\begin{bmatrix}\,
\b{\dot{v}}_p \\
\c{\dot{\omega}}_p \\
\end{bmatrix}+ \begin{bmatrix}
{ m\,\c\Omega\,\c\Omega\,\c{c}}\\
\c\Omega\,\left(\b I_c\,-m\,\b C\,\b C\right)\,\c \omega \\
\end{bmatrix}
=\begin{bmatrix}
\b F_c \\
\c\tau_c+\b c\times\b F_c\\
\end{bmatrix}\,}
\end{align*}
- Subscript $~c~$ center of mass (CoM)
- $~\b c~$ Vector from Point $~p$ to the CoM ,components body system
- \begin{align*}
&\b C= \left[ \begin {array}{ccc} 0&-c_{{3}}&c_{{2}}\\ c_{
{3}}&0&-c_{{1}}\\ -c_{{2}}&c_{{1}}&0\end {array}
\right]
\end{align*}
- Subscript $~p~$ point $~p~$
- $~\b p~$ Vector from inertial system to point $~p$
- $~\c\omega~$ Angular velocity vector, components body system
\begin{align*}
&\c\Omega= \left[ \begin {array}{ccc} 0&-\omega_{{3}}&\omega_{{2}}
\\ \omega_{{3}}&0&-\omega_{{1}}\\
-\omega_{{2}}&\omega_{{1}}&0\end {array} \right]
\end{align*}
- $~\b v~$ Velocity vector ,components body system
- $~\b R~$ Transformation matrix between body and inertial system
- $~\b I_c~$ Body inertia tensor an the CoM
- $~\b F~$ External forces at the CoM
- $~\c\tau~$ External torques at the CoM