At Weyl points ($K$, $q = 0$), we can approximate a tight-binding Hamiltonian as
\begin{equation}
H(\vec{K}+\vec{q})= v \vec{q} \cdot \vec{\sigma}.
\end{equation}
As this is a general $2x2$ Hamiltonian, we know that the eigenvalues will be of the form $ v|q|$. \
\end{definition}
The corresponding eigenvectors are given as
\begin{equation} |- \rangle = \biggl(\begin{array}{c}
e^{-i \varphi} \sin \theta /2 \\
- \cos \theta /2
\end{array}\biggr), \ |+ \rangle = \biggl(
\begin{array}{c}
e^{-i \varphi} \cos \theta /2 \\
\sin \theta /2
\end{array}\biggr)
\end{equation}
Note that these are not well-defined (single valued) at $\theta = \pi$. We can define a $U(1)$gauge transformation so that the eigenvectors are
\begin{equation} |- \rangle = \biggl(\begin{array}{c}
\sin \theta /2 \\
- e^{i \varphi}\cos \theta /2
\end{array}\biggr), \ |+ \rangle = \biggl(
\begin{array}{c}
\cos \theta /2 \\
e^{i \varphi}\sin \theta /2
\end{array}\biggr)
\end{equation}
Now these are single valued except at the north-pole $\theta = 0$.
\
We can compute the Berry curvature in both gauges
\begin{gather}
A_\theta = i \langle - | \partial_\theta | - \rangle = 0 \\
A_\phi = i \langle - | \partial_\phi | - \rangle = (\sin \theta /2)^2 \\
\end{gather}
and
\begin{gather}
A_\theta = i \langle - | \partial_\theta | - \rangle = 0 \\
A_\phi = i \langle - | \partial_\phi | - \rangle = - (\cos \theta /2)^2 \\
\end{gather}
From here you can see that this is no longer single valued at $\theta = 0$. This requires that we define a new gauge so that
\begin{gather}
A_\theta = i \langle - | \partial_\theta | - \rangle = 0 \\
A_\phi = i \langle - | \partial_\phi | - \rangle = - (\cos \theta /2)^2 \\
\end{gather}
However, both of these give the gauge independent
\begin{equation}
F_{ \theta \phi} = \partial_\theta A_\phi - \partial_\phi A_\theta = \frac{\sin(\theta)}{2}
\end{equation}
Since we just have $q\cdot \sigma$, our angles are just spherical coordinate parameterization. Now we can write the Berry curvature in terms of the inverse Jacobian
\begin{equation}
F_{q_i,q_j} = F_{\theta, \phi} \frac{\partial(\theta ,\phi)}{\partial(q_i,q_j)} = \frac{\sin}{2}\frac{\partial(\theta, \phi)}{\partial(q_i,q_j)} = \frac{1}{2|q|^2}
\end{equation}
Now the field strength pseudovector is given by
\begin{equation}
\mathcal{F}_i = \epsilon_{ijk}F_{jk}
\end{equation}
and so we have
\begin{equation}
\mathcal{F} = \frac{-\vec{q}}{2 |q|^3}
\end{equation}
From here it is clear that we can use Gauss's theorem
\begin{equation}
\int_{\text {sphere }} \mathcal{F}(q) \cdot d \mathbf{S}= 2 \pi \int d \theta \ d \phi \ \sin (\theta) =- 2 \pi (1)
\end{equation}
which gives a quantized Berry curvature given by the Chern number $C = \frac{1}{2 \pi} \gamma$