Action is defined as,
$$S ~=~ \int L(q, q', t) dt,$$
but my question is what variables does $S$ depend on?
Is $S = S(q, t)$ or $S = S(q, q', t)$ where $q' := \frac{dq}{dt}$?
In Wikipedia I've read that $S = S(q(t))$ and I think that suppose, $q$ and $t$ are considered as independent coordinates. Then $S$ should depend on $q'$ also because, for the typical Lagrangian
$$L ~=~ \frac{q'^2}{2} - V(q).$$